Skip to main content

A Multi-resolution Representation for Terrain Morphology

  • Conference paper
Geographic Information Science (GIScience 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4197))

Included in the following conference series:

Abstract

Mesh-based terrain representations provide accurate descriptions of a terrain, but fail in capturing its morphological structure. The morphology of a terrain is defined by its critical points and by the critical lines joining them, which form a so-called surface network. Because of the large size of current terrain data sets, a multi-resolution representation of the terrain morphology is crucial. Here, we address the problem of representing the morphology of a terrain at different resolutions. The basis of the multi-resolution terrain model, that we call a Multi-resolution Surface Network (MSN), is a generalization operator on a surface network, which produces a simplified representation incrementally. An MSN is combined with a multi-resolution mesh-based terrain model, which encompasses the terrain morphology at different resolutions. We show how variable-resolution representations can be extracted from an MSN, and we present also an implementation of an MSN in a compact encoding data structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj, C.L., Pascucci, V., Shikore, D.R.: Visualization of scalar topology for structural enhancement. In: Proceedings IEEE Visualization 1998, pp. 51–58. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  2. Bajaj, C.L., Shikore, D.R.: Topology preserving data simplification with error bounds. Computers and Graphics 22(1), 3–12 (1998)

    Article  Google Scholar 

  3. Bremer, P.-T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A multi-resolution data structure for two-dimensional Morse functions. In: Turk, G., van Wijk, J., Moorhead, R. (eds.) Proceedings IEEE Visualization 2003, pp. 139–146. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  4. Bremer, P.-T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topological hierarchy for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer Graphics 10(4), 385–396 (2004)

    Article  Google Scholar 

  5. Bremer, P.-T., Pascucci, V., Hamann, B.: Maximizing adaptivity in hierarchical topological models. In: International Conference on Shape Modeling and Applications, pp. 300–309. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  6. Werner, C.: Formal analysis of ridge and channel patterns in maturely eroded terrain. Annals of the Association of American Geographers 78(2), 253–270 (1988)

    Article  Google Scholar 

  7. Čomić, L., De Floriani, L., Papaleo, L.: Morse-smale decompositions for modeling terrain knowledge. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 426–444. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Danovaro, E., De Floriani, L., Magillo, P., Mesmoudi, M.M., Puppo, E.: Morphology-driven simplification and multi-resolution modeling of terrains. In: Hoel, E., Rigaux, P. (eds.) Proceedings ACM-GIS 2003 - The 11th International Symposium on Advances in Geographic Information Systems, pp. 63–70. ACM Press, New York (2003)

    Chapter  Google Scholar 

  9. Danovaro, E., De Floriani, L., Mesmoudi, M.M.: Topological analysis and characterization of discrete scalar fields. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 386–402. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Danovaro, E., De Floriani, L., Papaleo, L., Vitali, M.: Multi-resolution morse-smale decomposition of triangulated terrains. Technical Report DISI-TR-2005-21, Department of Computer and Information Sciences, University of Genova (May 2005)

    Google Scholar 

  11. Danovaro, E., De Floriani, L., Papaleo, L., Vitali, M.: Watershed algorithms for TINs: Implementations and Comparisons. Technical Report DISI-TR-06-03, Department of Computer and Information Sciences, University of Genova (February 2006)

    Google Scholar 

  12. De Floriani, L., Puppo, E., Magillo, P.: A formal approach to multi-resolution modeling. In: Strasser, W., Klein, R., Rau, R. (eds.) Geometric Modeling: Theory and Practice, pp. 302–323. Springer, Heidelberg (1997)

    Google Scholar 

  13. De Floriani, L., Puppo, E., Magillo, P.: Applications of computational geometry to Geographic Information Systems. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, ch. 7, pp. 333–388. Elsevier Science, Amsterdam (1999)

    Google Scholar 

  14. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise linear 3-manifolds. In: Proceedings 19th ACM Symposium on Computational Geometry, pp. 361–370 (2003)

    Google Scholar 

  15. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise linear 2-manifolds. In: Proceedings 17th ACM Symposium on Computational Geometry, pp. 70–79. ACM Press, New York (2001)

    Google Scholar 

  16. Griffiths, H.B.: Surfaces. Cambridge University Press, Cambridge (1976)

    MATH  Google Scholar 

  17. Gyulassy, A., Natarajan, V., Pascucci, V., Bremer, P.-T., Hamann, B.: Topology-based simplification for feature extraction from 3d scalar fields. In: Proceedings of IEEE Conference on Visualization (2005)

    Google Scholar 

  18. Ware, J.M., Jones, C.B.: A multiresolution topographic surface database. International Journal of Geographical Information Systems 6(6), 479–496 (1992)

    Article  Google Scholar 

  19. Meyer, F.: Topographic distance and watershed lines. Signal Processing 38, 113–125 (1994)

    Article  MATH  Google Scholar 

  20. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  21. Pascucci, V.: Topology diagrams of scalar fields in scientific visualization. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 121–129. John Wiley and Sons Ltd., Chichester (2004)

    Chapter  Google Scholar 

  22. Pfaltz, J.L.: Surface networks. Geographical Analysis 8, 77–93 (1976)

    Article  Google Scholar 

  23. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical recipes in c, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  24. Roerdink, J., Meijster, A.: The watershed transform: definitions, algorithms, and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2000)

    MATH  MathSciNet  Google Scholar 

  25. Schneider, B.: Extraction of hierarchical surface networks from bilinear surface patches. Geographical Analysis 37, 244–263 (2005)

    Article  Google Scholar 

  26. Schneider, B., Wood, J.: Construction of metric surface networks from raster-based DEMs. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 53–70. John Wiley and Sons Ltd., Chichester (2004)

    Chapter  Google Scholar 

  27. Smale, S.: Morse inequalities for a dynamical system. Bulletin of American Mathematical Society 66, 43–49 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  28. Takahashi, S.: Algorithms for extracting surface topology from digital elevation models. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 31–51. John Wiley and Sons Ltd., Chichester (2004)

    Chapter  Google Scholar 

  29. Takahashi, S., Ikeda, T., Kunii, T.L., Ueda, M.: Algorithms for extracting correct critical points and constructing topological graphs from discrete geographic elevation data. Computer Graphics Forum 14(3), 181–192 (1995)

    Article  Google Scholar 

  30. Vincent, L., Soille, P.: Watershed in digital spaces: an efficient algorithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)

    Article  Google Scholar 

  31. Wolf, G.W.: Topographic surfaces and surface networks. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 15–29. John Wiley and Sons Ltd., Chichester (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danovaro, E., De Floriani, L., Papaleo, L., Vitali, M. (2006). A Multi-resolution Representation for Terrain Morphology. In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds) Geographic Information Science. GIScience 2006. Lecture Notes in Computer Science, vol 4197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11863939_3

Download citation

  • DOI: https://doi.org/10.1007/11863939_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44526-5

  • Online ISBN: 978-3-540-44528-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics