Skip to main content

Discovering Shape Categories by Clustering Shock Trees

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2124))

Included in the following conference series:

Abstract

This paper investigates whether meaningful shape categories can be identified in an unsupervised way by clustering shock-trees. We commence by computing weighted and unweighted edit distances between shock-trees extracted from the Hamilton-Jacobi skeleton of 2D binary shapes. Next we use an EM-like algorithm to locate pairwise clusters in the pattern of edit-distances. We show that when the tree edit distance is weighted using the geometry of the skeleton, then the clustering method returns meaningful shape categories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: The hamilton-jacobi skeleton. ICCV (1999) 828–834

    Google Scholar 

  2. Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. International Journal of Computer Vision, 35 (1999) 13–32

    Article  Google Scholar 

  3. Kimia, B.B., Tannenbaum, A.R., Zucker, S.W.: Shapes, shocks, and deforamtions i. International Journal of Computer Vision, 15 (1995) 189–224

    Article  Google Scholar 

  4. Rizzi, S.: Genetic operators for hierarchical graph clustering. Pattern Recognition Letters, 19 (1998) 1293–1300

    Article  MATH  Google Scholar 

  5. Segen, J.: Learning graph models of shape. In: Laird, J. (ed.): Proceedings of the Fifth International Conference on Machine Learning (1988) 29–25

    Google Scholar 

  6. Sengupta, K., Boyer, K.L.: Organizing large structural modelbases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17 (1995)

    Google Scholar 

  7. Munger, A., Bunke, H., Jiang, X.: Combinatorial search vs. genetic algorithms: A case study based on the generalized median graph problem. Pattern Recognition Letters, 20 (1999) 1271–1279

    Article  Google Scholar 

  8. Shapiro, L.G., Haralick, R.M.: Relational models for scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4 (1982) 595–602

    Article  MATH  Google Scholar 

  9. Eshera, M.A., Fu, K.S.: A graph distance measure for image analysis. IEEE Transactions on Systems, Man and Cybernetics, 14 (1984) 398–407

    MATH  Google Scholar 

  10. Kittler, J., Christmas, W.J., Petrou, M.: Structural matching in computer vision using probabilistic relaxation. IEEE PAMI, 17 (1995) 749–764

    Google Scholar 

  11. Wilson, R., Hancock, E.R.: Structural matching by discrete relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (1997) 634–648

    Article  Google Scholar 

  12. Huet, B., Hancock, E.: Relational histograms for shape indexing. In: IEEE International Conference of Computer Vision (1998)

    Google Scholar 

  13. Sengupta, K., Boyer, K.L.: Modelbase partitioning using property matris spectra. Computer Vision and Image Understanding, 70 (1998)

    Google Scholar 

  14. Hofmann, T., Buhmann, M.: Pairwise data clustering by deterministic annealing. IEEE Tansactions on Pattern Analysis and Machine Intelligence, 19 (1997)

    Google Scholar 

  15. Shokoufandeh, A., et al.: Indexing using a spectral encoding of topological structure. In: Conference on Computer Vision and Pattern Recognition (June 1999)

    Google Scholar 

  16. Torsello, A., Hancock, E.R.: A skeletal measure of 2d shape similarity. In: Visual Form 2001. LNCS 2059 (2001)

    Chapter  Google Scholar 

  17. Sarkar, S., Boyer, K.L.: Quantitative measures of change based on feature organization: Eigenvalues and eigenvectors. Computer Vision and Image Understanding, 71 (1998) 110–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, B., Robles-Kelly, A., Torsello, A., Wilson, R.C., Hancock, E.R. (2001). Discovering Shape Categories by Clustering Shock Trees. In: Skarbek, W. (eds) Computer Analysis of Images and Patterns. CAIP 2001. Lecture Notes in Computer Science, vol 2124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44692-3_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-44692-3_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42513-7

  • Online ISBN: 978-3-540-44692-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics