Skip to main content

Decision Support Systems and Environment: Role of MCDA

  • Chapter
  • First Online:

Abstract

Decision Support Systems (DSS) are computer-based tools designed to support management decisions (Eom, 2001). Many environmental applications of DSS are reported in the current literature, including petroleum contamination detection (Geng et al., 2001), lake remediation (Gallego et al., 2004), soil decontamination (Zhiying et al., 2003), and many others. However, many of these DSS are in fact different models integrated to better visualize data or describe systems; they are not tailored to address specific decision problems or help decision makers in making inevitable trade-offs. Multicriteria Decision Analysis (MCDA), on the other hand, offers the ability to integrate policy preferences with the judgements of technical experts (Figueira et al., 2005; Linkov et al., 2007). MCDA methods enable simultaneous consideration of stakeholder interests and technical evaluations, utilizing rigorous scientific methods to process technical information. MCDA is especially important in situations of significant uncertainty and data scarcity, such as management and restoration of contaminated sites. This Chapter focuses on the conceptual background of MCDA, with particular attention paid to environmental DSS, and it discusses some of the most commonly used approaches, especially for multi-attribute decision problems (i.e. where both criteria and alternatives are finite in number).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    On the other side, outranking methods usually originate a partial pre-order.

  2. 2.

    Indeed, the OWA operator is a particular case of the Choquet integral, see later.

  3. 3.

    Among all the other ones, we limit to quote the ClusDM approach (Clustering for Decision Making) (Valls, 2003).

References

  • Alter SL (Fall 1977). A taxonomy of decision support systems. Sloan Management Review, vol 19 no 1, pp 39–56

    Google Scholar 

  • Antoine J (1998). Information technology and decision-support systems in AGL. Land and Water Development Division, FAO, Rome.

    Google Scholar 

  • Baker D, Hunter R, Johnson G, Krupa J, Murphy J, Sorenson K (2001). Guidebook to decision-making methods. US Department of Energy, Washington DC, WSRC-IM-2002-00002

    Google Scholar 

  • Bana e Costa C, Vansnick J (1994). MACBETH – an interactive path toward the constructions of cardinal value functions. International Transactions in Operational Research, vol 1, pp 489–500

    Google Scholar 

  • Bonczek RH, Holsapple CW, Whinston AB (1980). The evolving roles of models in decision support systems. Decision Sciences, vol 11 no 2, pp 337–356

    Google Scholar 

  • Brans J, Vincke P (1985). A preference ranking organization method: the PROMETHEE method for multiple criteria decision making. Management Science, vol 31, pp 647–656

    Google Scholar 

  • Bridges T, Apul D, Cura J, Kiker G, Linkov I (2004). Towards using comparative risk assessment to manage contaminated sites. In “Strategic management of Marine Ecosystems”, Edited by Levner E, Linkov I, Proth JM. Kluwer, Amsterdam

    Google Scholar 

  • Charnes A, Cooper WW (1961). Management models and industrial applications of linear programming. Wiley, New York.

    Google Scholar 

  • Chankong V, Haimes Y (1983). Multiobjective decision making: theory and methodology. North Holland, Amsterdam.

    Google Scholar 

  • Ekárt A, Németh SZ (2005). Stability analysis of tree structured decision functions. European Journal of Operational Research, vol 160 no 3, pp 676–695

    Google Scholar 

  • Eom SB (2001). Decision support systems. In “International Encyclopaedia of Business and Management”, 2nd Edition, Edited by Malcolm Warner. International Thomson Business Publishing Co, London, England

    Google Scholar 

  • Fedrizzi M, Giove S (2007). Incomplete pairwise comparison and consistency optimization. European Journal of Operational Research, vol 183, pp 303–313.

    Article  Google Scholar 

  • Figueira J, Ehrgott M, Greco S, (2005). Multiple criteria decision analysis: state of the art surveys. Springer, Berlin.

    Google Scholar 

  • Gallego E, Jiménez A, Mateos A, Ríos-Insua S, Sazykina T (2004). Application of multi-attribute analysis (MAA) to search for optimum remedial strategies for contaminated lakes with the MOIRA system. Paper Presented at the 11th Annual Meeting of the International Radiation Protection Association 23–28 May, Madrid.

    Google Scholar 

  • Grabisch M (1997). K-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems, vol 92, pp 167–189

    Article  Google Scholar 

  • Grabisch M, Labreuche C, Vansnick JC (2001). Construction of a decision model in the presence of interacting criteria. Proceedings of AGOP 2001, Asturias, Spain, pp 28–33

    Google Scholar 

  • Grabisch M, Lebreusche C, Vasnick JC (2003). On the extension of pseudo-boolean functions for the aggregation of interacting criteria. European Journal of Operational Research, vol 148 n° 1, pp 28–47

    Article  Google Scholar 

  • Halen H, Maes E, Moutier M, (2004). Gestion durable des terrains affectés par les ancienes activités industrielles en Wallonie: les enjeux et le défis posés par l’évaluation des risques dans le cadre des nouveaux développements réglementaires sur la pollution locale des sols. Biotechnologie Agronomie Société et Environnement. 8 n°2, pp 101–109

    Google Scholar 

  • Harker PT, Vargas LG (1987). The theory of ratio scale estimation: Saaty’s analytic hierarchy process. Management Science, vol 33, pp 1383–1403.

    Article  Google Scholar 

  • Hwang C, Yoon K (1981). Multiple attribute decision making: methods and applications. Springer, Berlin.

    Google Scholar 

  • Janssen R, Van Herwijnen M (1992). Multiobjective decision support for environmental management. Kluwer Academic, Boston, MA.

    Google Scholar 

  • Jeffreys I (2002). A Multi-Objective Decision-Support System (MODSS) with Stakeholders and Experts in the Hodgson Creek Catchment. A report for the RIRDC/Land & Water Australia/FWPRDC: Joint Venture Agroforestry Program, July 2002, Edited by Harrison, S and Herbohn, J.

    Google Scholar 

  • Kacprzyk J, Fedrizzi M, Nurmi H (1992). Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets and Systems, vol 49, pp 21–31

    Article  Google Scholar 

  • Keen Peter GW, Scott Morton MS (1978). Decision support systems: an organizational perspective. Addison-Wesley, Reading, MA, USA.

    Google Scholar 

  • Keen Peter GW (1981). Value analysis: Justifying decision support systems. MIS Quarterly, vol 5 no 1, pp 1–16

    Google Scholar 

  • Keeney R, Raiffa H (1976). Decision with multiple objectives. Preferences and value trade-off. Wiley, New York, pp 589.

    Google Scholar 

  • Keeney RL, Raiffa H (1976). Decisions with multiple objectives: preferences and value trade-off. Wiley, New York

    Google Scholar 

  • Keeney RL, Raiffa H (1993). Decisions with multiple objectives: preferences and value trade-offs. Cambridge University Press, Cambridge.

    Google Scholar 

  • Klement EP, Mesiar R, Pap E (2000). Triangular norms. Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Kwiesielewicz M, Van Uden E (2004). Inconsistent and contradictory judgements in pairwise comparison method in the AHP. Computer & Operations Research, vol 31, pp 713–719

    Article  Google Scholar 

  • Linkov I, Bridges TS, Jamil S, Kiker GA, Seager TP, Varghese A (2004). Multi-criteria decision analysis: Framework for applications in remedial planning for contaminated sites. Kluwer, Amsterdam, pp 15–54

    Google Scholar 

  • Linkov I, Figueira JR, Levchenko A, Tervonen T, Tkachuk A, Satterstrom FK, Seager TP (2007). A multi-criteria decision analysis approach for prioritization of performance metrics: U.S. government performance and response act and oil spill response. In “Managing Critical Infrastructure Risks”, pp 261–298, Springer, Netherlands.

    Google Scholar 

  • Linkov I, Belluck DA, Bridges T, Gardner KH, Kiker G, Meyer A, Rogers SH Satterstrom FK, Seager TP (2006). Multicriteria decision analysis: a comprehensive decision approach for management of contaminated sediments. Risk Analysis, vol 26 n°1, pp 61–78

    Article  Google Scholar 

  • Lootsma FA (1999). Multi-criteria decision analysis via ratio and difference judgement. Kluwer, Dordrecht

    Book  Google Scholar 

  • Marichal JL (1998). Dependence between criteria and multiple criteria decision aid. Proceedings of 2nd International Workshop on Preference and Decisions TRENTO’98, Trento

    Google Scholar 

  • Malczewski J, Bojórquez-Tapia L, Moreno-Sánchez R, Ongay-Delhumeau E (1997). Multicriteria group decision-making model for environmental conflict analysis in the Cape Region, Mexico. Journal of Environmental Planning and Management, vol 40, pp 349–374

    Google Scholar 

  • Mareschal B (1988). Weight stability intervals in multicriteria decision aid. European Journal of Operational Research, vol 33 no 1, pp 54–64.

    Google Scholar 

  • Marichal JL, Roubens M (2000). Determination of weight of interacting criteria from a reference set. European Journal of Operational Research, vol 124, pp 641–650

    Article  Google Scholar 

  • Mészáros CS, Rapcsák T (1996). On sensitivity analysis for a class of decision systems. Decision Support Systems, vol 16 no 3, pp 231–240

    Google Scholar 

  • Ramanathan R (2001). A note on the use of the analytic hierarchy process for environmental impact assessment. Journal of Environmental Management, vol 63, pp 27–35

    Article  CAS  Google Scholar 

  • Rogers M, Bruen M (1998). Choosing realistic values of indifference, preference and veto thresholds for use with environmental criteria within ELECTRE. European Journal of Operational Research, vol 107, pp 542–551

    Google Scholar 

  • Rogers M, Bruen M (1998). A new system for weighting environmental criteria for use within ELECTRE III. European Journal of Operational Research, vol 107, pp 552–563

    Article  Google Scholar 

  • Roy B (1968). Classement et choix en présence de points de vue multiple (la méthode ELECTRE). Revue Française d’Informatique et de Recherche Opérationnelle, vol 8, pp 57–75

    Google Scholar 

  • Roy B, Bertier P (1973). La méthode ELECTRE II : une application au médiaplanning. OR’72, Edited by Ross M. pp 291–302. North Holland, Amsterdam

    Google Scholar 

  • Roy B (1978). ELECTRE III: un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers Centre d’Etudes de Recherche Opérationnelle, vol 20, pp 3–24

    Google Scholar 

  • Saaty TL (2000). Fundamentals of decision making and priority theory with the analytic hierachy process. RWS Pubblications, Pittsburg

    Google Scholar 

  • Schmoldt DL, Kangas J, Mendoza GA, Pesonen M (2001). The analytic hierarchy process in natural resource and environmental decision making. Kluwer Academic Publishers

    Google Scholar 

  • Tryantaphyllou E, Sanchez A (1997). A sensitivity analysis approach for some deterministic multicriteria decision making methods. Decision Science, vol 28 no 1, pp 151–194

    Google Scholar 

  • Valls A (2003). ClusDM: a MCDM Method for Heterogeneous Data Sets. Bellaterra, IIIA-CSIC monographies. ISBN:84-00-08154-4.

    Google Scholar 

  • Van Den Honert RC, Lootsma FA (1996). Group preference aggregation in the multiplicative AHP. The model of the group decision process and Pareto optimality. European Journal of Operational Research, vol 96, pp 363–370

    Article  Google Scholar 

  • Vincke P (1992). Multi-criteria decision aid. John Wiley and Sons, Chichester.

    Google Scholar 

  • Von Altrock C (1995). Fuzzy logic and neuro-fuzzy applications explained, Prentice Hall PTR, Upper Saddle River, NJ

    Google Scholar 

  • Von Winterfeldt D, Edwards W (1986). Decision analysis and behavioural research. Cambridge University Press, Cambridge

    Google Scholar 

  • Wedley WC, Choo EU, Schoner B (2001). Magnitude adjustment for AHP benefit/cost ratio. European Journal of Operational Research, vol 133, pp 342–351

    Article  Google Scholar 

  • Wolters WTM, Mareschal B (1995). Novel types of sensitivity analysis for additive MCDM methods. European Journal of Operational Research, vol 81 no 2, pp 281–290

    Google Scholar 

  • Yager RR (1988). On ordered weighted averaging aggregation operators in multicriteria decision-making. IEEE Transactions on Systems, Man and Cybernetics, vol 18 n° 1, pp 183, 190

    Article  Google Scholar 

  • Yager RR (1993). Families of OWA operators. Fuzzy sets and Systems, vol 59 no 1, pp 25–148

    Google Scholar 

  • Yager RR (1999). An extension of the analytical hierarchy process using OWA operators. Journal of Intelligent and Fuzzy Systems, vol 7, pp 401–417

    Google Scholar 

  • Yoon K, Hwang C (1995). Multi-attribute decision-making: an introduction. Sage Publications, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Giove, S., Brancia, A., Satterstrom, F.K., Linkov, I. (2009). Decision Support Systems and Environment: Role of MCDA. In: Marcomini, A., Suter II, G., Critto, A. (eds) Decision Support Systems for Risk-Based Management of Contaminated Sites. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09722-0_3

Download citation

Publish with us

Policies and ethics