Skip to main content

Materials and Devices for Nanoelectronic Systems Beyond Ultimately Scaled CMOS

  • Chapter
  • First Online:

Abstract

In this chapter, we review some of the most recent results in these areas and put them in a unified context that covers a very wide range, from materials to system design. The first section presents a top-down silicon nanowire fabrication platform for high-mobility gate-all-around (GAA) MOSFETs and impact-ionization devices. Ferroelectric FET with sub-100-nm copolymer P(VDF-TrFE) gate dielectric are examined in the next section for nonvolatile memory applications, which is a very promising direction toward future high-density memory arrays, followed by a discussion of materials for piezoelectric nanodevices in the last section.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dennard RH, Cai J, Kumar A (2007) A perspective on today’s scaling challenges and possible future directions. Solid State Electron 51(5):18–25

    Google Scholar 

  2. Colinge J-P (1997) Silicon-on-insulator technology: materials to VLSI, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  3. Moselund KE (2008) Three-dimensional electronic devices fabricated on a top-down silicon nanowire platform. EPFL PhD Thesis

    Google Scholar 

  4. Moselund KE, Bouvet D, Leblebici Y, Ben Jamaa H, Atienza D, De Micheli G, Ionescu AM (2007) GAA MOSFET for logic on a wire. In: European Nanoday. International nanotechnology conference on communication and cooperation, INC3 2007, Brussels, Belgium, 16–19 April 2007

    Google Scholar 

  5. Moselund KE, Pott V, Bouvet D, Ionescu AM (2007) Abrupt current switching due to impact ionization effects in Ω-gate MOSFET on low doped bulk silicon. ESSDERC 2007, Technical Digest, pp 287–290

    Google Scholar 

  6. Moselund KE, Bouvet D, Ionescu AM (2007) Prospect for logic-on-a-wire: Ω-gate NMOS inverter fabricated on single Si nanowire. Technical Digest MNE 2007, Copenhagen, 5B-2, pp 123–124

    Google Scholar 

  7. Moselund KE, Dobrosz P, Olsen S, Pott V, De Michielis L, Tsamados D, Bouvet D, O’Neill A, Ionescu AM (2007) Bended gate-all-around nanowire MOSFET:a device with enhanced carrier mobility due to oxidation-induced tensile stress. Technical Digest IEDM, pp 191–194

    Google Scholar 

  8. Moselund KE, Bouvet D, Ben Jamaa MH, Atienza D, Leblebici Y, De Micheli G, Ionescu AM (2008) Prospects for logic-on-a-wire. Microelectronic Eng (Special Edition) 85:1406–1409

    Google Scholar 

  9. Moselund KE, Pott V, Bouvet D, Ionescu AM (2008) Hysteretic inverter-on-a-body-tied-wire based on less-than-10 mV/decade abrupt punch-through impact ionization MOS PIMOS switch. VLSI-TSA, Taiwan, April 2008

    Google Scholar 

  10. Moselund KE, Pott V, Meinen C, Bouvet D, Kayal M, Ionescu AM (2008) DRAM based on hysteresis in impact ionization single-transistor-latch. Accepted for presentation at the MRS Spring meeting, San Francisco, March 2008

    Google Scholar 

  11. Moselund KE, Bouvet D, Pott V, Meinen C, Kayal M, Ionescu AM (2008) Punch-through impact ionization MOSFET (PIMOS):from device principle to applications. Solid State Electron 52:1336–1344

    Article  Google Scholar 

  12. Gopalakrishnan K, Griffin PB, Plummer JD (2005) Impact ionization MOS (I-MOS) – Part I: Device and circuit simulations. IEEE Trans Electron Devices 52(1):69–76

    Article  Google Scholar 

  13. Furukawa T, Date M, Ohuchi M, Chiba A (1984) Ferroelectric switching characteristics in a copolymer of vinylidene fluoride and trifluorethylene. J Appl Phys 56(5):1481

    Article  Google Scholar 

  14. Lim SH, Rastogi AC, Desu SB (2004) Electrical properties of metal-ferroelectric-insulator-semiconductor structures based on ferroelectric polyvinylidene fluoride copolymer film gate for nonvolatile random access memory application. J Appl Phys 96(10):5673

    Article  Google Scholar 

  15. Gerber A, Kohlstedt H, Fitsilis M, Waser R, Reece TJ, Ducharme S, Rije E (2006) Low-voltage operation of metal-ferroelectric-insulator-semiconductor diodes incorporating a ferroelectric polyvinylidene fluoride copolymer Langmuir-Blodgett film. J Appl Phys 100:024110

    Article  Google Scholar 

  16. Reece TJ, Ducharme S, Sorokin AV, Poulsen M (2003) Nonvolatile memory element based on a ferroelectric polymer Langmuir–Blodgett film. Appl Phys Lett 82:142

    Article  Google Scholar 

  17. Naber RCG, Tanase C, Blom PWM, Gelinck GH, Marsman AW, Touwslager FJ, Setayesh S, Leeuw DM (2005) High-performance solution-processed polymer ferroelectric field effect transistors. Nat Mater 4(3):243

    Article  Google Scholar 

  18. Sakoda T et al (2001) Hydrogen-robust submicron \({\mathrm{IrO}}_{\mathrm{x}}/\mathrm{Pb}(\mathrm{Zr},\mathrm{Ti}){\mathrm{O}}_{3}/\mathrm{Ir}\) capacitors for embedded ferroelectric memory. Jpn J Appl Phys 40(1):2911

    Article  Google Scholar 

  19. Kinam K, Jung Hyuk C, Jungdal C, Hong-Sik J (2005) The future prospect of nonvolatile memory. 2005 IEEE symposium on VLSI technology

    Google Scholar 

  20. A-Paz de Araujo C, Cuchiaro JD, McMillan LD, Scott MC, Scott JF (1995) Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374(6523):627

    Article  Google Scholar 

  21. Nakao K, Judai Y, Azuma M, Shimada Y, Otsuki T (1998) Voltage shift effect on retention failure in ferroelectric memories. Jpn J Appl Phys 37:5203–5206

    Article  Google Scholar 

  22. Fujisaki S, Ishiwara H, Fujisaki Y (2007) Low-voltage operation of ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer capacitors and metal-ferroelectric- insulator-semiconductor diodes. Appl Phys Lett 90: 158

    Article  Google Scholar 

  23. Salvatore GA, Bouvet D, Stolitchnov I, Setter N, Ionescu AM (2008) Low voltage ferroelectric FET with sub-100 nm copolymer P(VDF-TrFE) gate dielectric for non-volatile 1T memory. ESSDERC 2008, Edinburgh, Scotland, 15–19 September 2008

    Google Scholar 

  24. Paz de Araujo CA, Cuchiaro JD, McMillan LD, Scott MC, Scott JF (1995) Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374(6323):627–629

    Article  Google Scholar 

  25. Alexe M, Harnagea C, Hesse D, Gösele U (2001) Polarization imprint and size effects in mesoscopic ferroelectric structures. Appl Phys Lett 79:242

    Article  Google Scholar 

  26. Stolitchnov I, Colla E, Tagantsev A, Bharadwaja SSN, Hong S, Setter N, Cross JS, Tsukada M (2002) Unusual size effect on the polarization patterns in micron-size Pb(Zr,Ti)O-3 film capacitors. Appl Phys Lett 80(25):4804–4806

    Article  Google Scholar 

  27. Magrez A, Vasco E, Seo JW, Dieker C, Setter N, Forro L (2006).Growth of single-crystalline KNbO3 nanostructures. J Phys Chem 110:58–61 **

    Google Scholar 

  28. Vasco E, Magrez A, Forro L, Setter N (2005) Growth kinetics of one-dimensional KNbO3 nanostructures by hydrothermal processing routes. J Phys Chem B 109(30):14331–14334

    Article  Google Scholar 

  29. Magrez A, Seo JW, Dieker C, Forró L Preparation of large scale arrays of oriented KNbO3 nanowires, in preparation

    Google Scholar 

  30. Wada S, Muraoka K, Kakemoto H, Tsumuri T, Kumagai H (2005) Enhanced piezoelectric properties of potassium niobate single crystals with fine engineered domain configurations. Mater Sci Eng B 120:186–189

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Leblebici .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bouvet, D. et al. (2009). Materials and Devices for Nanoelectronic Systems Beyond Ultimately Scaled CMOS. In: Nanosystems Design and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0255-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0255-9_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0254-2

  • Online ISBN: 978-1-4419-0255-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics