Skip to main content

Abscisic Acid and Biomass Partitioning in Tomato Under Salinity

  • Chapter
  • First Online:

Abstract

Increasing soil salinization is an enormous cause of crop productivity reduction in many areas of the world. It has a deep backlash on crop yields because it reduces leaf growth and induces leaf senescence, this in turn reduces plant assimilation activity, impairing its capacity for producing further growth or harvestable biomass. Plant has the capacity for adaptation to the environmental conditions likely involving long-distance signals between different organs (e.g., between root and shoot) through phytohormones. Abscisic acid (ABA) between them, surely, has an important action in the whole plant responses to drought and salt stresses. Processes that control leaf growth and shoot development during the osmotic phase of salinity are still not well known and several different opinions exist on cross-talk between other hormones and ABA in the process of biomass allocation under salinity conditions.

Moreover root system likely plays an important role to cope up with salts, and how salts affect root growth and architecture is of great importance to understand plant adaptation process to this abiotic stress. Root architecture modification under salinity seems to be a crucial aspect of crop response to salinity on which significance there are still many aspect to clarify.

Our experimental activity suggests that the amount of ABA and ion increase in tomato leaves significantly regulates both growth and gas exchange in tomato. ABA seems to be involved in tomato salt response and could have a crucial action in regulation of dry matter partition between root and shoot of tomato plants subjected to salinity. The significance of root architecture in tomato processes to salt adaptation is still uncertain, but it likely plays an important role. Source–sink control and root-to-shoot signaling are interconnected mechanisms that allow tomato plants to increase salt tolerance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelhamid MT, Shokr MMB, Bekheta MA (2010) Growth, root characteristics, and leaf nutrients accumulation of four faba bean (Vicia faba L.) cultivars differing in their broomrape tolerance and the soil properties in relation to salinity. Commun Soil Sci Plan 41:2713–2728

    Article  CAS  Google Scholar 

  • Abrisqueta JM, Hernansaenz A, Alarcon JJ, Lozano MA (1991) Root growth dynamics of two tomato genotypes under saline conditions. Suelo y Planta 1:351–361

    Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Ven der Straeten D, Peng J, Herberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 6:91–94

    Article  Google Scholar 

  • Albacete A, Ghanem ME, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Martinez V, Lutts S, Dodd IC, Perez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 59:4119–4131

    Article  PubMed  CAS  Google Scholar 

  • Assmann SA (2004) Abscisic acid signal transduction in stomatal responses. In: Davis PJ (ed) Plant hormones: biosynthesis, signal transduction, action. Kluwer, London, pp 291–442

    Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Basirat M, Malboobi MA, Mousavi A, Asgharzadeh A, Samavat S (2011) Effects of phosphorous supply on growth, phosphate distribution and expression of transporter genes in tomato plants. Aust J Coltural Sci 5(5):537–543

    CAS  Google Scholar 

  • Bazzaz FA, Morse SR (1991) Annual plants: potential for response to multiple stresses. In: Mooney HA, Winner WE, Dell EJ (eds) Response of plants to multiple stresses. Academic, New York, pp 283–305

    Google Scholar 

  • Bethke PC, Drew MC (1992) Stomatal and non stomatal components to inhibition of photosynthesis in leaves of Capsicum annum during progressive exposure to NaCl salinity. Physiol Plant 86:115–123

    Article  Google Scholar 

  • Boote KJ, Kropff MJ, Bindraban PS (2001) Physiology and modeling of traits in crop plants: implications for genetic improvement. Agric Syst 70:395–420

    Article  Google Scholar 

  • Centritto M, Loreto F, Chartzoulakis K (2003) The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ 26:585–594

    Article  Google Scholar 

  • Chartzoulakis K, Loupassaki M, Bertaki M, Androulakis I (2002) Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Sci Hortic 96:235–247

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought – from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. J Exp Bot 103:551–560

    CAS  Google Scholar 

  • Cuartero J, Fernandez-Munoz R (1999) Tomato and salinity. Sci Hortic 78:83–125

    Article  CAS  Google Scholar 

  • De Pascale S, Martino A, Raimondi G, Maggio A (2007) Comparative analysis of water and salt stress-induced modifications of quality parameters in cherry tomato. J Hort Sci Biotechnol 82:283–289

    Google Scholar 

  • Dodd IC, Davies WJ (1996) The relationship between leaf growth and ABA accumulation in the grass leaf elongation zone. Plant Cell Environ 19:1047–1056

    Article  CAS  Google Scholar 

  • Dorais M, Ehret DL, Papadopoulos AP (2008) Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochem Rev 7:231–250

    Article  CAS  Google Scholar 

  • Ehret DL, Ho LC (1986) The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. J Horti Sci 61:361–367

    Google Scholar 

  • Erice G, Louahlia S, Irigoyen JJ, Sanchez-Diaz M, Avice JC (2010) Biomass partitioning, ­morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. J Plant Physiol 167:114–120

    Article  PubMed  CAS  Google Scholar 

  • Favati F, Lovelli S, Galgano F, Di Tommaso T, Miccolis V, Candido V (2009) Processing tomato quality as affected by irrigation scheduling. Sci Hortic 122:562–571

    Article  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Diaz-Espejo A, Galme’s J, Kaldenhoff H, Medrano A, Ribas-Carbo M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders. Agric Water Manage 78:15–24

    Article  Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance and cold tolerance in tomato. Plant Cell Tiss Org 76:101–119

    Article  CAS  Google Scholar 

  • Gemes K, Poor P, Horvath E, Kolbert Z, Szopko D, Szepesi A, Tari I (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol Plant 142:179–192

    Article  PubMed  CAS  Google Scholar 

  • Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F (2008) Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot 59:3039–3050

    Article  PubMed  CAS  Google Scholar 

  • Ghanem ME, Albacete A, Smigocki AC, Frebort I, Pospisilova H, Martinez-Andujar C, Acosta M, Sanchez-Bravo J, Lutts S, Dodd IC, Perez-Alfocea F (2011a) Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 62:125–140

    Article  PubMed  CAS  Google Scholar 

  • Ghanem ME, Hichri I, Smigocki AC, Albacete A, Fauconnier ML, Diatloff E, Martinez-Andujar C, Lutts S, Dodd IC, Perez-Alfocea F (2011b) Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance. Plant Cell Rep 30:807–823

    Article  PubMed  CAS  Google Scholar 

  • Gregory PJ (2006) Food production under poor, adverse climatic conditions. In: Proceedings of the IX ESA Congress, Warsaw, 4–7 Sept 2006, 19pp

    Google Scholar 

  • Hartig K, Beck E (2006) Crosstalk between auxin, cytokinins and sugars in the plant cell cycle. Plant Biol 8:389–396

    Article  PubMed  CAS  Google Scholar 

  • Hassine AB, Lutts S (2010) Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. J Plant Physiol 167:1440–1456

    Article  Google Scholar 

  • Hunt LA, Reynolds MP, Sayre KD, Rajaram S, White JW, Yan W (2003) Crop modelling and the identification of stable coefficients that may reflect significant groups of genes. Agron J 95:20–31

    Article  Google Scholar 

  • IPCC, Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) IPCC summary for policymakers. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK/New York

    Google Scholar 

  • Jacobsen S-E, Jensen CR, Liu F (2012) Improving crop production in the arid Mediterranean climate. Field Crop Res 128:34–47

    Article  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Austr J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jia W, Davies WJ (2007) Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals. Plant Physiol 143:68–77

    Article  PubMed  CAS  Google Scholar 

  • Kafkafi U (1996) Root growth under stress-salinity. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, ed, 2nd edn. Marcel Dekker, New York, pp 375–391

    Google Scholar 

  • Kobashi K, Sugaya S, Gemma H, Iwahori S (2001) Effect of abscisic acid (ABA) on sugar accumulation in the fresh tissue of peach fruit at the start of the maturation stage. Plant Growth Regul 35:215–223

    Article  CAS  Google Scholar 

  • Koushafar M, Khoshgoftarmanesh AH, Moezzi A, Mobli M (2011) Effect of dynamic unequal distribution of salts in the root environment on performance and crop per drop (CPD) of hydroponic-grown tomato. Sci Hortic 131:1–5

    Article  CAS  Google Scholar 

  • Koyro HW, Ahmad P, Nicole G (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer Science+Business Media, New York, pp 1–28

    Chapter  Google Scholar 

  • Kurth E, Cramer GR, Lauchli A, Epstein E (1986) Effects of NaCl and CaCl2 on cell enlargement and cell production in cotton roots. Plant Physiol 82:1102–1106

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  PubMed  CAS  Google Scholar 

  • Lloyd J, Kriedemann PE, Aspinall D (1989) Comparative sensitivity of Prior Lisbon lemon and Valencia orange trees to foliar sodium and chloride concentrations. Plant Cell Environ 12:529–540

    Article  Google Scholar 

  • Lovelli S, Perniola M, Di Tommaso T, Ventrella D, Moriondo M, Amato M (2010) Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterranean area. Agric Water Manage 97:1287–1292

    Article  Google Scholar 

  • Lovelli S, Scopa A, Perniola M, Di Tommaso T, Sofo A (2012) Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants. J Plant Physiol 169:226–233

    Article  PubMed  CAS  Google Scholar 

  • Maggio A, Raimondi G, Martino A, De Pascale S (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Env Exp Bot 59:276–282

    Article  CAS  Google Scholar 

  • Maggio A, De Pascale S, Fagnano M, Barbieri G (2011) Saline agriculture in Mediterranean environments. Ital J Agron 6:36–43

    Google Scholar 

  • Martin B, Ruiz-Torres N (1992) Effects of water-deficit stress on photosynthesis, its components and component limitations and on water use efficiency in wheat (Triticum aestivum L.). Plant Physiol 100:733–739

    Article  PubMed  CAS  Google Scholar 

  • Martre P, Porter JR, Jamieson PD, Triboi E (2003) Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulation of nitrogen remobilization for wheat. Plant Physiol 133:1959–1967

    Article  PubMed  CAS  Google Scholar 

  • Miflin B (2000) Crop improvement in the 21st century. J Exp Bot 51:1–8

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JP, Shennan C, Grattan SR, May DM (1991) Tomato fruit yields and quality under water deficit and salinity. J Am Soc Hort Sci 116:215–221

    CAS  Google Scholar 

  • Monteleone M (2006) Salinity management in southern Italy irrigation areas. Ital J Agron 1:129–202

    Google Scholar 

  • Mulholland BJ, Taylor IB, Jackson IC (2003) Can ABA mediate responses of salinity of stressed tomato. Env Exp Bot 50:17–28

    Article  CAS  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  PubMed  CAS  Google Scholar 

  • Okhovatian-Ardakani AR, Mehrabanian M, Dehghani F, Akbarzadeh A (2010) Salt tolerance evaluation and relative comparison in cuttings of different pomegranate cultivars. Plant Soil Environ 56:176–185

    CAS  Google Scholar 

  • Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16:239–262

    Article  Google Scholar 

  • Ostonen I, Püttsepp U, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141(3):426–442

    Article  Google Scholar 

  • Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, Fei Z, Ye Z (2007) Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot 58:507–520

    Article  PubMed  CAS  Google Scholar 

  • Paranychianakis NV, Chartzoulakis KS (2005) Irrigation of Mediterranean crops with saline water: from physiology to management practices. Agric Ecosyst Environ 106:171–187

    Article  CAS  Google Scholar 

  • Peleg Z, Blumwold E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  PubMed  CAS  Google Scholar 

  • Perez-Alfocea F, Albacete A, Ghanem ME, Dodd IC (2010) Hormonal regulation of source-sink relations to maintain crop productivity under salinity: a case study of root-to-root signalling in tomato. Funct Plant Biol 37:592–603

    Article  CAS  Google Scholar 

  • Prior LD, Grieve AM, Slavish PG, Gullis PR (1992) Sodium chloride and soil texture interactions in irrigated field grown Sultana grapevines. II. Plant mineral content, growth and physiology. Aust J Agric Res 43:1067–1084

    Article  CAS  Google Scholar 

  • Rivelli AR, Lovelli S, Perniola M (2002) Effects of salinity on gas exchange, water relations and growth of sunflower (Helianthus annuus L.). Funct Plant Biol 29:1405–1415

    Article  CAS  Google Scholar 

  • Ross J, O’Neill D (2001) New interactions between classical plant hormones. Trends Plant Sci 6:2–4

    Article  PubMed  CAS  Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480

    Article  PubMed  CAS  Google Scholar 

  • Sachs T (2005) Auxin’s role as an example of the mechanisms of shoot/root relations. Plant Soil 268:13–19

    Article  CAS  Google Scholar 

  • Santner A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signalling. Plant J 61:1029–1040

    Article  PubMed  CAS  Google Scholar 

  • Schwarz D, Grosch R (2003) Influence of nutrient solution concentration and root pathogen (Pythium aphanidermatum) on tomato root growth and morphology. Sci Hortic 97:109–120

    Article  CAS  Google Scholar 

  • Schwarz D, Heinen M, Van Noordiwijk M (1995) Rooting characteristics of lettuce grown in irrigated sand beds. Plant Soil 176:205–217

    Article  CAS  Google Scholar 

  • Seemann JR, Critchely C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164:151–162

    Article  CAS  Google Scholar 

  • Sharp RE, LeNoble ME (2002) ABA ethylene and the control of shoot and root growth under water stress. J Exp Bot 53:33–37

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE, Hsiao TC, Silk WK (1990) Growth of the maize primary root at low water potentials. II. Role of growth and déposition of hexose and potassium in osmotic adjustment. Plant Physiol 93:1337–1346

    Article  PubMed  CAS  Google Scholar 

  • Snapp SS, Shennan C (1992) Effects of salinity on root growth and death dynamics of tomato, Lycopersicon esculentum Mill. New Phytol 121:71–79

    Article  Google Scholar 

  • Sofo A, Scopa A, Manfra M, De Nisco M, Tenore G, Troisi J, Fiori RD, Novellino E (2011) Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus x P.canescens). Plant Growth Regul 65:421–425

    Article  CAS  Google Scholar 

  • Spollen WG, LeNoble ME, Samuels TD, Bernstein N, Sharp RE (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol 122:967–976

    Article  PubMed  CAS  Google Scholar 

  • Srivastava LM (2002) Plant, growth and development – hormones and environment. Elsevier Academic Press, San Diego, pp 307–314

    Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    Article  PubMed  CAS  Google Scholar 

  • Van der Werf A, Nagel OW (1996) Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: opinion. Plant Soil 185:21–32

    Article  Google Scholar 

  • Vaughan LV, MacAdam JW, Smith SE, Dudley LM (2002) Root growth and yield of differing alfalfa rooting populations under increasing salinity and zero leaching. Crop Sci 42:2064–2071

    Article  Google Scholar 

  • Vitale D, Rana G, Soldo P (2010) Trends and extremes analysis of daily weather data from a site in the Capitanata plain (Southern Italy). Ital J Agron 5:133–143

    Google Scholar 

  • Walker RP, Torokfalvy E, Scott NS, Kriedemann PE (1981) An analysis of photosynthetic response to salt treatment in Vitis vinifera. Aust J Plant Physiol 8:359–374

    Article  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210

    Article  PubMed  CAS  Google Scholar 

  • Wollenweber B, Porter JB, Lubberstedt T (2005) Need for multidisciplinary research towards a second green revolution. Curr Opin Plant Biol 8:337–341

    Article  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought and salt stress. Plant Cell 14(Suppl 1):165–183

    Google Scholar 

  • Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685

    PubMed  Google Scholar 

  • Yeo AR (2007) Salinity. In: Yeo AR, Flowers TJ (eds) Plant solute transport. Blackwell, Oxford, pp 340–365

    Chapter  Google Scholar 

  • Yuan K, Rashotte AM, Wysocka-Diller JW (2011) ABA and GA signaling pathways interact and regulate seed germination and seedling development under salt stress. Acta Physiol Plant 33:261–271

    Article  CAS  Google Scholar 

  • Zhang H-X, Blumwald E (2001) Transgenic salt tolerant tomato plants accumulate salt in the foliage but not in the fruits. Nat Biotech 19:765–768

    Article  CAS  Google Scholar 

  • Zhang J, Davies WJ (1990) Does ABA in the xylem control the rate of leaf growth in soil-dried maize and sunflower plants. J Exp Bot 41:1125–1132

    Article  CAS  Google Scholar 

  • Zhang J, Jia W, Yang J (2004) ABA in plant water stress signalling. Proc Indian Natl Sci Acad B 70:367–377

    CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119

    Article  Google Scholar 

  • Zhu M, Dai S, Chen S (2012) The stomata frontline of plant interaction with the environment-perspectives from hormone regulation. Front Biol 7:96–112

    Article  CAS  Google Scholar 

  • Zobel RW (1975) The genetics of the root development. In: Torrey JG, Clarkson DF (eds) The development and function of roots. Academic, London, pp 261–275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Lovelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lovelli, S., Sofo, A., Perniola, M., Scopa, A. (2013). Abscisic Acid and Biomass Partitioning in Tomato Under Salinity. In: Ahmad, P., Azooz, M., Prasad, M. (eds) Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4747-4_10

Download citation

Publish with us

Policies and ethics