Skip to main content

Sensor Arrays: Arrays of Micro- and Nanoelectrodes

  • Chapter
  • First Online:
Environmental Analysis by Electrochemical Sensors and Biosensors

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This chapter deals with the principles of functioning and electroanalytical usefulness of arrays of micrometer and nanometer-sized electrodes. We discuss arrays of microelectrodes both individually shaped and interdigitated. In the field of nanostructured electrodes, both nanoelectrode ensembles (random arrays) and ordered arrays are presented. A comparison between the fabrication methods, characteristics as well as advantages and limits of each kind of array are critically evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Compton RG, Wildgoose GG, Rees NV, Streeter I, Baron R (2008) Design, fabrication, characterisation and application of nanoelectrode arrays. Chem Phys Lett 459:1–17

    CAS  Google Scholar 

  2. Štulík K, Amatore C, Holub K, Mareček V, Kutner W (2000) Microelectrodes. Definitions, characterization, and applications. Pure Appl Chem 72:1483–1492

    Google Scholar 

  3. Penner RM, Martin CR (1987) Preparation and electrochemical characterization of ultramicroelectrode ensembles. Anal Chem 59:2625–2630

    CAS  Google Scholar 

  4. LaFratta CN, Walt DR (2008) Very high density sensing arrays. Chem Rev 108:614–637

    CAS  Google Scholar 

  5. Szunertis S, Walt DR (2003) The use of optical fiber bundles combined with electrochemistry for chemical imaging. Chem Phys Chem 4:186–192

    Google Scholar 

  6. Szunertis S, Thouin L (2007) Microelectrode arrays. In: Zoski CG (ed) Handbook of electrochemistry. Elsevier, Amsterdam

    Google Scholar 

  7. Huang X-J, O’Mahony AM, Compton RG (2009) Microelectrode arrays for electrochemistry: approaches to fabrication. Small 5:776–788

    CAS  Google Scholar 

  8. Beni V, Arrigan DWM (2008) Microelectrode arrays and microfabricated devices in electrochemical stripping analysis. Curr Anal Chem 4:229–241

    CAS  Google Scholar 

  9. Wu P (1993) Fabrication and characterization of a new class of microelectrodes arrays exhibiting steady-state current behavior. Anal Chem 65:1643–1646

    CAS  Google Scholar 

  10. Lee CY, Tan YJ, Bond AM (2008) Identification of surface heterogeneity effects in cyclic voltammograms derived from analysis of an individually addressable gold array electrode. Anal Chem 80:3873–3881

    CAS  Google Scholar 

  11. Nascimento VB, Augelli MA, Pedrotti JJ, Gutz IGR, Angnes L (1997) Arrays of gold microelectrodes made from split integratedcircuit chips. Electroanal 9:335–339

    CAS  Google Scholar 

  12. Szunerits S, Garrigue P, Bruneel J-L, Servant L, Sojic N (2003) Fabrication of a sub-micrometer electrode array: electrochemical characterisation and mapping of an electroactive species by confocal raman microspectroscopy. Electroanal 15:548–555

    CAS  Google Scholar 

  13. Cheng IF, Martin CR (1988) Ultramicrodisk electrode ensembles prepared by incorporating carbon paste into a microporous host membrane. Anal Chem 60:2163–2165

    CAS  Google Scholar 

  14. Cheng IF, Whiteley LD, Martin CR (1989) Ultramicroelectrode ensembles. comparison of experimental and theoretical responses and evaluation of electroanalytical detection limits. Anal Chem 61:762–766

    CAS  Google Scholar 

  15. Jin WR, Weng QF, Wu JR (1997) Determination of bovine serum albumin by capillary zone electrophoresis with end-column amperometric detection at the carbon fiber microdisk array electrode. Anal Chim Acta 342:67–74

    CAS  Google Scholar 

  16. Jin WR, Wei HY, Zhao X (1997) Determination of adenine and guanine by capillary zone electrophoresis with end-column amperometric detection at a carbon fiber microdisk array electrode. Electroanal 9:770–774

    CAS  Google Scholar 

  17. Cheng Q, Brajter-Toth A (1992) Selectivity and sensitivity of self-assembled thioctic acid electrodes. Anal Chem 64:1998–2002

    CAS  Google Scholar 

  18. Cheng Q, Brajter-Toth A (1995) Permselectivity and high sensitivity at ultrathin monolayers. Effect of film hydrophobicity. Anal Chem 67:2767–2775

    CAS  Google Scholar 

  19. Cheng Q, Brajter-Toth A (1996) Permselectivity, sensitivity, and amperometric pH sensing at thioctic acid monolayer microelectrodes. Anal Chem 68:4180–4185

    CAS  Google Scholar 

  20. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    CAS  Google Scholar 

  21. Nishizawa M, Sunagawa T, Yoneyama H (1997) Selective desorption of 3-mercaptopropionic acid from a mixed monolayer with hexadecanethiol assembled on a gold electrode. J Electroanal Chem 436:213–218

    CAS  Google Scholar 

  22. He HX, Li QG, Zhou ZY, Zhang H, Li SFY, Liu ZF (2000) Fabrication of microelectrode arrays using microcontact printing. Langmuir 16:9683–9686

    CAS  Google Scholar 

  23. Sankhe AY, Booth BD, Wiker NJ, Kilbey SM (2005) Inkjet-printed monolayers as platforms for tethered polymers. Langmuir 21:5332–5336

    CAS  Google Scholar 

  24. Rianasari I, Walder L, Burchardt M, Zawisza I, Wittstock G (2008) Inkjet-printed thiol self-assembled monolayer structures on gold: quality control and microarray electrode fabrication. Langmuir 24:9110–9117

    CAS  Google Scholar 

  25. Lowinsohn D, Peres HEM, Kosminsky L, Paixao TRLC, Ferreira TL, Ramirez-Fernandez F-J, Bertotti M (2006) Design and fabrication of a microelectrode array for iodate quantification in small sample volumes. Sensor Actuat B Chem 113:80–87

    CAS  Google Scholar 

  26. Aguiar FA, Gallant AJ, Rosamond MC, Rhodes A, Wood D, Kataky R (2007) Conical recessed gold microelectrode arrays produced during photolithographic methods: characterization and causes. Electrochem Commun 9:879–885

    CAS  Google Scholar 

  27. Ordeig O, Godino N, del Campo J, Munoz FX, Nikolajeff F, Nyholm L (2008) On-chip electric field driven electrochemical detection using a poly(dimethylsiloxane) microchannel with gold microband electrodes. Anal Chem 80:3622–3632

    CAS  Google Scholar 

  28. Varshney M, Li Y (2008) Double interdigitated array microelectrode-based impedance biosensor for detection of viable Escherichia coli O157:H7 in growth medium. Talanta 74:518–525

    CAS  Google Scholar 

  29. Ojima H, Umeda M, Mohamedi M, Uhida I (2003) Electrochemical detection of protons produced in an electrode reaction using interdigitated microarray electrodes. Electroanal 15:1677–1681

    CAS  Google Scholar 

  30. Gavin PF, Ewing EG (1996) Continuous separations with microfabricated electrophoresis-electrochemical array detection. J Am Chem Soc 118:8932–8936

    CAS  Google Scholar 

  31. Orozco J, Suarez G, Fernandez-Sanchez C, McNeil C, Jimenez-Jorquera C (2007) Characterization of ultramicroelectrode arrays combining electrochemical techniques and optical microscopy imaging. Electrochim Acta 53:729–736

    CAS  Google Scholar 

  32. Koster O, Schumann W, Vogt H, Mokwa W (2001) Quality control of ultra-microelectrode arrays using cyclic voltammetry, electrochemical impedance spectroscopy and scanning electrochemical microscopy. Sensor Actuat B Chem 76:573–581

    CAS  Google Scholar 

  33. Berduque A, Lanyon YH, Beni V, Herzog G, Watson YE, Rodgers K, Stam F, Alderman J, Arrigan DWM (2007) Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions. Talanta 71:1022–1030

    CAS  Google Scholar 

  34. Nolan MA, Kouvanes SP (1999) Microfabricated array of iridium microdisks as a substrate for direct determination of Cu2+ or Hg2+ using square-wave anodic stripping voltammetry. Anal Chem 71:3567–3573

    CAS  Google Scholar 

  35. Silva PRM, El Khakani MA, Le Drogoff B, Chaker M, Vijh AK (1999) Mercury-electroplated-iridium microelectrode array based sensors for the detection of heavy metal ultratraces: optimization of the mercury charge. Sensor Actuat B Chem 60:161–167

    CAS  Google Scholar 

  36. Tercier-Weaber M- L, Buffle J, Ficcabrino GC, Koudelka-Hep M, Riccardi G, Confalonieri F, Sina A, Graziottin F (2000) A novel probe with individually addressable gel-integrated microsensor arrays for real-time high spatial resolution concentration profile measurements. Electroanal 12:27–34

    Google Scholar 

  37. Kouvanes SP, Deng W, Hallock PR, Kovacs GT, Storment C (1994) Iridium-based ultramicroelectrode array fabricated by microlithography. Anal Chem 66:418–423

    Google Scholar 

  38. Noel S, Tercier-Waeber M-L, Lin L, Buffle J, Guenat O, Koudelka-Hep M (2006) Integrated microelectroanalytical system for direct simultaneous voltammetric measurements of free meta ion concentrations in natural waters. Electroanal 18:2061–2069

    CAS  Google Scholar 

  39. Wang J, Luo D-B, Horiuchi T (1998) Anodic stripping with collection at interdigitated carbon film microelectrode arrays. Electroanal 10:107–110

    CAS  Google Scholar 

  40. Heo JI, Shim DS, Teixidor GT, Oh S, Madou MJ, Shin H (2011) Carbon interdigitated array nanoelectrodes for electrochemical applications. J Electrochem Soc 158:J76–J80

    CAS  Google Scholar 

  41. Lawrence NS, Pagels M, Meredith A, Jones TGJ, Hall CE, Pickles CSJ, Godfried HP, Banks CE, Compton RG, Jiang L (2006) Electroanalytical applications of boron-doped diamond microelectrode arrays. Talanta 69:829–834

    CAS  Google Scholar 

  42. Simm AO, Banks CE, Ward-Jones S, Davies TJ, Lawrence NS, Jones TGJ, Jiang L, Compton RG (2005) Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu) via electrodeposition. Analyst 130:1303–1311

    CAS  Google Scholar 

  43. Possin GE (1970) A method for forming very small diameter wires. Rev Sci Instrum 41:772–774

    CAS  Google Scholar 

  44. Williams WD, Giordano N (1984) Fabrication of 80Å metal wires. Rev Sci Instrum 55:410–412

    CAS  Google Scholar 

  45. Menon VP, Martin CR (1995) Fabrication and evaluation of nanoelectrode ensembles. Anal Chem 67:1920–1928

    CAS  Google Scholar 

  46. Ongaro M, Ugo P (2013) Bioelectroanalysis with nanoelectrode ensembles and arrays. Anal Bioanal Chem 405:3715–3729

    CAS  Google Scholar 

  47. Routkevitch D, Bigioni T, Moskovits M, Xu J-M (1996) Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J Phys Chem 100:14037–14047

    CAS  Google Scholar 

  48. Schoenberger C, van der Zande BMI, Fokkink LGJ, Henny M, Schmid C, Kruger M, Bachtold A, Huber R, Birk H, Staufer U (1997) Template synthesis of nanowires in porous polycarbonate membranes: electrochemistry and morphology. J Phys Chem B 101:5497–5505

    Google Scholar 

  49. Martin CR (1999) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry. Marcel Dekker, New York

    Google Scholar 

  50. De Leo M, Pereira FC, Moretto LM, Scopece P, Polizzi S, Ugo P (2007) Towards a better understanding of gold electroless deposition in track-etched templates. Chem Mater 19:5955–5964

    Google Scholar 

  51. Gilliam RJ, Thorpe SJ, Kirk DJW (2006) A nucleation and growth study of gold nanowires and nanotubes in polymeric membranes. Appl Electrochem 37:233–239

    Google Scholar 

  52. Pra LD-D, Ferain E, Legras R, Demoustier-Champagne S (2002) Beam interactions with materials and atoms. Nucl Instrum Methods Phys Res B 196:81–88

    Google Scholar 

  53. Gambirasi A, Cattarin S, Musiani M, Vázquez-Gómez L, Verlato E (2011) Direct electrodeposition of metal nanowires on electrode surface. Electrochim Acta 56:8582–8588

    CAS  Google Scholar 

  54. Konishi Y, Motoyama M, Matsushima H, Fukunaka Y, Ishii R, Ito Y (2003) Electrodeposition of Cu nanowire arrays with a template. J Electroanal Chem 559:149–153

    CAS  Google Scholar 

  55. Motoyama M, Fukunaka Y, Sakka T, Ogata YH, Kikuchi S (2005) Electrochemical processing of Cu and Ni nanowire arrays. J Electroanal Chem 584:84–91

    CAS  Google Scholar 

  56. De Leo M (2006) Nanoelectrode ensembles for electrochemical sensing purposes. PhD thesis, University Ca’ Foscari of Venice, Université de Bordeaux 1, doi: http://hdl.handle.net/10579/766

  57. Piraux L, Duboix S, Champagne S (1997) Template synthesis of nanoscale materials using the membrane porosity. Nucl Inst Methods Phys Res B 131:357–363

    CAS  Google Scholar 

  58. Chiriac H, Moga AE, Urse M, Ovari T-A (2003) Preparation and magnetic properties of electrodeposited magnetic nanowires. Sensors Actuat A Phys 106:348–351

    CAS  Google Scholar 

  59. Pirota KR, Navas D, Hernandez-Vélez M, Nielsch K, Vasquez M (2004) Novel magnetic materials prepared by electrodeposition techniques: arrays of nanowires and multi-layered microwires. J Alloy Compd 369:18–26

    CAS  Google Scholar 

  60. Platt M, Dryfeand RAW, Robaerts EPL (2004) Structural and electrochemical characterisation of Pt and Pd nanoparticles electrodeposited at the liquid/liquid interface. Electrochim Acta 49:3937–3945

    CAS  Google Scholar 

  61. Prieto AL, Sander MS, Gonzalez MSM, Gronsky R, Sands T, Stacy AM (2001) Electrodeposition of ordered Bi2Te3 nanowire arrays. J Am Chem Soc 123:7160–7161

    CAS  Google Scholar 

  62. Paunovic M, Schlesinger M (2000) Modern electroplating. Wiley, New York

    Google Scholar 

  63. Pereira FC, Moretto LM, De Leo M, Boldrin Zanoni MV, Ugo P (2006) Gold nanoelectrode ensembles for direct trace electroanalysis of iodide. Anal Chim Acta 575:16–24

    CAS  Google Scholar 

  64. Jirage KB, Hulteen JC, Martin CR (1997) Nanotubule-based molecular-filtration membranes. Science 278:655–658

    CAS  Google Scholar 

  65. Hulteen JC, Jirage KB, Martin CR (1998) Introducing chemical transport selectivity into gold nanotubule membranes. J Am Chem Soc 120:6603–6604

    CAS  Google Scholar 

  66. Bercu B, Enculescu I, Spohr R (2004) Copper tubes prepared by electroless deposition in ion track templates. Nucl Inst Methods B 225:497–502

    CAS  Google Scholar 

  67. Dryfe RAW, Simm AO, Kralj B (2003) Electroless deposition of palladium at bare and templated liquid/liquid interfaces. J Am Chem Soc 125:13014–13015

    CAS  Google Scholar 

  68. Tai Y-L, Teng H (2004) Template synthesis and electrochemical characterization of Nickel-based tubule electrode arrays. Chem Mater 16:338–342

    CAS  Google Scholar 

  69. Krishnamoorthy K, Zoski CG (2005) Fabrication of 3D gold nanoelectrode ensembles by chemical etching. Anal Chem 77:5068–5071

    CAS  Google Scholar 

  70. De Leo M, Kuhn A, Ugo P (2007) Ionomer-coated electrodes and nanoelectrode ensembles as electrochemical environmental sensors: recent advances and prospects. Electroanal 19:227–236

    Google Scholar 

  71. Yu S, Li N, Wharton J, Martin CR (2003) Nano wheat fields prepared by plasma-etching gold nanowire-containing membranes. Nano Lett 3:815–818

    CAS  Google Scholar 

  72. Ugo P, Moretto LM, Vezzà F (2002) Ionomer-coated electrodes and nanoelectrode ensembles as electrochemical environmental sensors: recent advances and prospects. Chem Phys Chem 3:917–925

    CAS  Google Scholar 

  73. Ugo P (2005) Polymer based voltammetric sensors. In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of sensors. American Scientific Publishers, Stevenson Ranch

    Google Scholar 

  74. Ugo P, Moretto LM (2007) Template depositions of metals. In: Zoski C (ed) Handbook of electrochemistry. Elsevier, Amsterdam

    Google Scholar 

  75. Moretto LM, Pepe N, Ugo P (2004) Voltammetry of redox analytes at trace concentrations with nanoelectrodes ensembles. Talanta 62:1055–1060

    CAS  Google Scholar 

  76. Arrigan DWM (2004) Nanoelectrods, nanoelectrode arrays and their application. Analyst 129:1157–1165

    CAS  Google Scholar 

  77. Errachid A, Mills CA, Pla-Roca M, Lopez MJ, Villanueva G, Bausells J, Crespo E, Teixidor F, Samitier J (2008) Focused ion beam production of nanoelectrode arrays. Mater Sci Eng C 28:777–780

    CAS  Google Scholar 

  78. Lanyon YH, De Marzi G, Watson YE, Quinn AJ, Gleeson JP, Redmond G, Arrigan DWM (2007) Fabrication of nanopore array electrodes by focused ion beam milling. Anal Chem 79:3048–3055

    CAS  Google Scholar 

  79. Sandison ME, Cooper JM (2006) Nanofabrication of electrode arrays by electron-beam and nanoimprint lithographies. Lab Chip 6:1020–1025

    CAS  Google Scholar 

  80. Losilia NS, Martinez J, Garcia R (2009) Large area nanoscale patterning of silicon surfaces by parallel local oxidation. Nanotechnology 20:475304

    Google Scholar 

  81. Losilia NS, Oxtoby NS, Martinez J, Garcia F, Garcia R, Mas-Torrent M, Vecciana J, Rovia C (2008) Sub-50 nm positioning of organic compounds onto silicon oxide patterns fabricated by local oxidation nanolithography. Nanotechnology 19:455308

    Google Scholar 

  82. Albonetti C, Martinez J, Losilia NS, Greco P, Cavallini M, Borgatti F, Montecchi M, Pasquali L, Garcia R, Biscarini F (2008) Parallel-local anodic oxidation of silicon surfaces by soft stamps. Nanotechnology 19:435303

    Google Scholar 

  83. Moretto LM, Tormen M, De Leo M, Carpentiero A, Ugo P (2011) Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography. Nanotechnology 22:185305

    CAS  Google Scholar 

  84. Pozzi Mucelli S, Zamuner M, Tormen M, Stanta G, Ugo P (2008) Nanoelectrode ensembles as recognition platform for electrochemical immunosensors. Biosens Bioelectron 23:1900–1903

    Google Scholar 

  85. Zamuner M, Pozzi Mucelli S, Tormen M, Stanta G, Ugo P (2008) Electrochemical nanobiosensors and protein detection. Eur J Nanomed 1:33–36

    Google Scholar 

  86. Compton RG, Banks CE (2007) Understanding voltammetry. World Scientific, Singapore

    Google Scholar 

  87. Bard AJ, Faulkner L (2000) Electrochemical methods. Wiley, New York

    Google Scholar 

  88. Dickinson EJF, Compton RG (2009) Diffuse double layer at nanoelectrodes. Phys Chem Lett C 113:17585–17589

    CAS  Google Scholar 

  89. Henstridge MC, Compton RG (2011) Mass transport to micro- and nanoelectrodes and their arrays: a review. Chem Rec 12:63–71

    Google Scholar 

  90. Lee HJ, Beriet C, Ferrigno R, Girault HH (2001) Cyclic voltammetry at a regular microdisc electrode array. J Electroanal Chem 502:138–145

    CAS  Google Scholar 

  91. Hulteen JC, Menon VP, Martin CR (1996) Template preparation of nanoelectrode ensembles achieving the “pure-radial” electrochemical-response limiting case. J Chem Soc Faraday T 92:4029–4032

    CAS  Google Scholar 

  92. Guo J, Lindner E (2009) Cyclic voltammograms at coplanar and shallow recessed microdisk electrode arrays: guidelines for design and experiment. Anal Chem 81:130–138

    CAS  Google Scholar 

  93. Davies TJ, Compton RG (2005) The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: theory. J Electroanal Chem 585:63–82

    CAS  Google Scholar 

  94. Amatore C, Oleinik AI, Svir I (2009) Numerical simulation of diffusion processes at recessed disk microelectrode arrays using the quasi-conformal mapping approach. Anal Chem 81:4397–4405

    CAS  Google Scholar 

  95. Godino N, Borrise X, Munoz FX, del Campo FJ, Compton RG (2009) Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach: theory and experiment. J Phys Chem C 113:11119–11125

    CAS  Google Scholar 

  96. Ugo P, Moretto LM, De Leo M, Doherty AP, Vallese C, Pentlavalli S (2010) Diffusion regimes at nanoelectrode ensembles in different ionic liquids. Electrochim Acta 55:2865–2872

    CAS  Google Scholar 

  97. Ugo P, Moretto LM, Vezzà F (2003) In: Baltes H, Fedder GK, Korvink JG (eds) Sensors update. Wiley-VCH, Weinheim

    Google Scholar 

  98. Ugo P, Moretto LM, Bellomi S, Menon VP, Martin CR (1996) Ion exchange voltammetry at polymer film coated nanoelectrode ensembles. Anal Chem 68:4160–4165

    CAS  Google Scholar 

  99. Brunetti B, Ugo P, Moretto LM, Martin CR (2000) Electrochemistry of phenothiazine and methylviologen biosensor electron-transfer mediators at nanoelectrode ensembles. J Electroanal Chem 491:166–174

    CAS  Google Scholar 

  100. Amatore C, Saveant JM, Tessier D (1983) Charge transfer at partially blocked surfaces. A model for the case of microscopic active and inactive sites. J Electroanal Chem 147:39–51

    CAS  Google Scholar 

  101. Greef R, Pea R, Peter LM, Pletcher D, Robinson J (1985) Instrumental methods in electrochemistry. Ellis Horwood Ltd., Chester

    Google Scholar 

  102. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355

    CAS  Google Scholar 

  103. Ecken H, Ingebrandt S, Krause M, Richter D, Hara M, Offenhausser A (2003) 64-Channel extended gate electrode arrays for extracellular signal recording. Electrochim Acta 48:3355–3362

    CAS  Google Scholar 

  104. Zoski C, Simjee N, Guenat O, Koudelka-Hep M (2004) Addressable microelectrode arrays: characterization by imaging with scanning electrochemical microscopy. Anal Chem 76:62–72

    CAS  Google Scholar 

  105. Connolly P, Moores GR, Monaghan W, Shen J, Britland S, Clark P (1992) Microelectronic and nanoelectronic interfacing techniques for biological systems. Sensor Actuat B Chem 6:113–121

    CAS  Google Scholar 

  106. Livache T, Bazin H, Caillat P, Roget A (1998) Electroconducting polymers for the construction of DNA or peptide arrays on silicon chips. Biosens Bioelectron 13:629–634

    CAS  Google Scholar 

  107. Pei J, Tercier-Waeber M-L, Buffle J, Fiaccabrino GC, Koudelka-Hep M (2001) Individually addressable gel-integrated voltammetric microelectrode array for high-resolution measurement of concentration profiles at interfaces. Anal Chem 73:2273–2281

    CAS  Google Scholar 

  108. Meyer H, Drewer H, Ortindig B, Cammann K, Kakerow R, Manoli Y, Mokwa W, Rospert M (1995) Two-dimensional imaging of O2, H2O2, and glucose distributions by an array of 400 individually addressable microelectrodes. Anal Chem 67:1164–1170

    CAS  Google Scholar 

  109. Ficcabrino GC, Koudelka-Hep M, Jeanneret S, Vandenberg A, Derooij NF (1994) Array of individually addressable microelectrodes. Sensor Actuat B Chem 19:675–677

    Google Scholar 

  110. Sullivan MG, Utomo H, Fagan PJ, Ward MD (1999) Automated electrochemical analysis with combinatorial electrode arrays. Anal Chem 71:4369–4375

    CAS  Google Scholar 

  111. Montgomery DD (2000) Electrochemical solid phase synthesis. US Patent 6,093,302, 25 July 2000

    Google Scholar 

  112. Lockhart DJ, Dong HL, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang CW, Kobayashi M, Horton H, Brown EL (1996) Expression monitoring by hybridization to high-density oligonucleotides arrays. Nat Biotechnol 14:1675–1680

    CAS  Google Scholar 

  113. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Nature 270:467–470

    CAS  Google Scholar 

  114. Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhardt DJ, Morris MS, Fodor SPA (1996) Accessing genetic information with high-density DNA arrays. Science 274:610–614

    CAS  Google Scholar 

  115. Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N et al (1999) Characterization of a single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22:231–238

    CAS  Google Scholar 

  116. Halushka MK, Fan JB, Bentley K, Hsie L, Shen N, Weder A, Cooper R, Lipshutz R, Chakravarti A (1999) Patterns of a single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 22:239–247

    CAS  Google Scholar 

  117. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J et al (1998) Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science 180:1077–1082

    Google Scholar 

  118. Bulyk ML, Gentalen E, Lockhart DJ, Church GM (1999) Quantifying DNA–protein interactions by double-stranded DNA arrays. Nat Biotechnol 17:573–577

    CAS  Google Scholar 

  119. Wojciechowski J, Danley D, Cooper J, Yazvenko N, Rowe Taitt C (2010) Multiplexed electrochemical detection of yersinia pestis and staphylococcal enterotoxin B using an antibody microarray. Sensors 10:3351–3362

    CAS  Google Scholar 

  120. Yoo SM, Lee SY (2008) Diagnosis of pathogens using DNA microarray. Recent Pat Biotechnol 2:124–129

    CAS  Google Scholar 

  121. Aguilar ZP, Fritsch I (2003) Immobilized enzyme linked DNA-hybridization assay with electrochemical detection for cryptosporidium parvum hsp70 mRNA. Anal Chem 75:3890–3897

    CAS  Google Scholar 

  122. MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32:526–532

    CAS  Google Scholar 

  123. Stoevesandt O, Taussig MJ, He M (2009) Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics 6:145–157

    CAS  Google Scholar 

  124. Mischel PS, Cloughesy TF, Nelson SF (2004) DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 10:782–792

    Google Scholar 

  125. Macgregor PF, Squire JA (2002) Application of microarrays to the analysis of gene expression in cancer. Clin Chem 48:1170–1177

    CAS  Google Scholar 

  126. Zoski CG, Yang N, He P, Berdondini L, Koudelka-Hep M (2007) Addressable Nanoelectrode Membrane Arrays: Fabrication and Steady-State Behavior. Anal Chem 79:1474–1484

    Google Scholar 

  127. Sanderson DG, Anderson LB (1985) Filar electrodes: steady-state currents and spectroelectrochemistry at twin interdigitated electrodes. Anal Chem 57:2388–2393

    CAS  Google Scholar 

  128. Amatore C, Fosset B, Bartlet J, Deakin MR, Wighman RM (1988) Electrochemical kinetics at microelectrodes: part V. Migrational effects on steady or quasi-steady-state voltammograms. J Electroanal Chem 256:255–268

    CAS  Google Scholar 

  129. Nishihara H, Dalton F, Murray RW (1991) Interdigitated array electrode diffusion measurements in donor-acceptor solutions in polyether electrolyte solvents. Anal Chem 63:2955–2960

    CAS  Google Scholar 

  130. Goss CA, Majda M (1991) Lateral diffusion in organized bilayer assemblies of electroactive amphiphiles influence of the oxidation state of the amphiphile investigated by steady-state methods involving an interdigitated micro-electrode array device. J Electroanal Chem 300:377–405

    CAS  Google Scholar 

  131. Niwa O (1995) Electroanalysis with interdigitated array microelectrodes. Electroanal 7:606–613

    CAS  Google Scholar 

  132. Aoki K, Morita M, Niwa O, Tabei H (1988) Quantitative analysis of reversible diffusion-controlled currents of redox soluble species at interdigitated array electrodes under steady-state conditions. J Electroanal Chem 256:269–282

    CAS  Google Scholar 

  133. Iwasaki Y, Morita M (1995) Electrochemical measurements with interdigitated array microelectrodes. Curr Sep 14:2–8

    CAS  Google Scholar 

  134. Silvestrini M, Fruck L, Ugo P (2013) Functionalized ensembles of nanoelectrodes as affinity biosensors for DNA hybridization detection. Biosens Bioelectron 40:265–270

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MIUR (Rome) (project: PRIN 2010AXENJ8) for the partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ongaro, M., Ugo, P. (2014). Sensor Arrays: Arrays of Micro- and Nanoelectrodes. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0676-5_20

Download citation

Publish with us

Policies and ethics