Skip to main content

Integrating Ship Movement Scheduling and Tug Assignment Within a Canal Harbor

  • Chapter
  • First Online:
Advances in Optimization and Decision Science for Society, Services and Enterprises

Part of the book series: AIRO Springer Series ((AIROSS,volume 3))

  • 589 Accesses

Abstract

In this paper we address the in-port ship scheduling and tug assignment problem. This problem aims to determine a schedule of ship movements, and their escorting tugs, within a canal harbor. We formulate the problem as a Boolean satisfiability problem. In particular, we deal with canal-harbors, as this kind of harbors present strict constraints, e.g., on safety distance. We consider the Port of Venice, a medium size Italian harbor, as a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bierwirth, C., Meisel, F.: A survey of berth allocation and quay crane scheduling problems in container terminals. Eur. J. Oper. Res. 202(3), 615–627 (2010)

    Article  MathSciNet  Google Scholar 

  2. Bussieck, M.R., Winter, T., Zimmermann, U.T.: Discrete optimization in public rail transport. Math. Program. 79(1), 415–444 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Canestrelli, E., Corazza, M., De Nadai, G., Pesenti, R.: Managing the ship movements in the port of Venice. Netw. Spat. Econ. 17(3), 861–887 (2017)

    Article  MathSciNet  Google Scholar 

  4. Carlo, H.J., Vis, I.F.A., Roodbergen, K.J.: Seaside operations in container terminals: literature overview, trends, and research directions. Flex. Serv. Manuf. J. 27(2), 224–262 (2015)

    Article  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  6. Gharehgozli, A.H., Roy, D., de Koster, R.: Sea container terminals: new technologies and or models. Maritime Econ. Logist. 18(2), 103–140 (2016)

    Article  Google Scholar 

  7. Lardeux, F., Saubion, F., Hao, J.K.: GASAT: A genetic local search algorithm for the satisfiability problem. Evol. Comput. 14(2), 223–253 (2006)

    Article  Google Scholar 

  8. Pellegrini, P., Marlière, G., Pesenti, R., Rodriguez, J.: Recife-milp: An effective milp-based heuristic for the real-time railway traffic management problem. IEEE Trans. Intell. Transp. Syst. 16(5), 2609–2619 (2015)

    Article  Google Scholar 

  9. Pellegrini, P., di Tollo, G., Pesenti, R.: Scheduling ships movements within a canal harbor. Soft Comput. (2018). https://doi.org/10.1007/s00500-018-3469-2

    Article  Google Scholar 

  10. Piu, F., Speranza, M.G.: The locomotive assignment problem: a survey on optimization models. Int. Trans. Oper. Res. 21(3), 327–352 (2014)

    Article  MathSciNet  Google Scholar 

  11. di Tollo, G., Lardeux, F., Maturana, J., Saubion, F.: An experimental study of adaptive control for evolutionary algorithms. Appl. Soft Comput. 35, 359–372 (2015)

    Article  Google Scholar 

  12. Vaidyanathan, B., Ahuja, R.K., Liu, J., Shughart, L.A.: Real-life locomotive planning: new formulations and computational results. Transp. Res. B Methodol. 42(2), 147–168 (2008)

    Article  Google Scholar 

  13. Wang, X., Arnesen, M.J., Fagerholt, K., Gjestvang, M., Thun, K.: A two-phase heuristic for an in-port ship routing problem with tank allocation. Comput. Oper. Res. 91, 37–47 (2018)

    Article  MathSciNet  Google Scholar 

  14. Xu, X., Li, C.L., Xu, Z.: Integrated train timetabling and locomotive assignment. Transp. Res. B: Methodol. 117, 573–593 (2018)

    Article  Google Scholar 

  15. Zhang, X., Lin, J., Guo, Z., Liu, T.: Vessel transportation scheduling optimization based on channel-berth coordination. Ocean Eng. 112, 145–152 (2016)

    Article  Google Scholar 

  16. Zhen, L., Liang, Z., Zhuge, D., Lee, L.H., Chew, E.P.: Daily berth planning in a tidal port with channel flow control. Transp. Res. B Methodol. 106, 193–217 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the “Smart PORt Terminals - SPORT” MIUR-PRIN project (grant number: 2015XAPRKF) financed by the Italian state. The study was partially developed within the Centro Studi su Economia e Management della Portualità of Università Ca’ Foscari, Venezia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Petris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tollo, G.d., Pesenti, R., Petris, M. (2019). Integrating Ship Movement Scheduling and Tug Assignment Within a Canal Harbor. In: Paolucci, M., Sciomachen, A., Uberti, P. (eds) Advances in Optimization and Decision Science for Society, Services and Enterprises. AIRO Springer Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-34960-8_2

Download citation

Publish with us

Policies and ethics