Skip to main content

Distorted Probabilities and Bayesian Confirmation Measures

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12256))

Abstract

Bayesian Confirmation Measures (BCMs) assess the impact of the occurrence of one event on the credibility of another. Many measures of this kind have been defined in literature. We want to analyze how these measures change when the probabilities involved in their computation are distorted. Composing distortions and BCMs we define a set of Distorted Bayesian Confirmation Measures (DBCMs); we study the properties that DBCMs may inherit from BCMs, and propose a way to measure the degree of distortion of a DBCM with respect to a corresponding BCM.

Authors are listed in alphabetical order. All authors contributed equally to this work, they discussed the results and implications and commented on the manuscript at all stages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Throughout the paper, the formulas are assumed to be well defined, e.g. denominators do not vanish, as implicitly done in the literature.

  2. 2.

    Feasibility of (xyz) requires that probabilities x, y and z satisfy in particular the Total Probability Theorem.

  3. 3.

    A BCM that satisfies all the above considered symmetries is Carnap’s b [1] which is defined as \( b(H,E)=P(E \cap H)-P(E) \, P(H). \)

  4. 4.

    Most of the literature reports in fact the measure as \(R(H,E)=1-[P(\lnot H |E)/P(\lnot H)]\), see, e.g., [5].

  5. 5.

    Computations in this paper were performed with Wolfram’s software Mathematica (version 11.0.1.0).

  6. 6.

    Moreover, depending on the chosen DBCM, some of the above recalled inequalities may be required to be strict.

  7. 7.

    Note that in the case of \(R_g\), confirmation and disconfirmation cases are considered separately. We decided to split the computation of the \(L_2\) norm in the latter case, due to the fact that in some cases (distortions \(g_3\) and \(g_4\)) the value of \({\mu }^p(C,g)\) diverges on its whole domain, but converges in the subset where \(P(H|E)>P(H)\), i.e., the confirmation case.

References

  1. Carnap, R.: Logical Foundations of Probability. University of Chicago Press, Chicago (1950)

    MATH  Google Scholar 

  2. Celotto, E.: Visualizing the behavior and some symmetry properties of Bayesian confirmation Measures. Data Min. Knowl. Disc. 31(3), 739–773 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Celotto, E., Ellero, A., Ferretti, P.: Monotonicity and symmetry of IFPD Bayesian confirmation measures. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Yañez, C. (eds.) MDAI 2016. LNCS (LNAI), vol. 9880, pp. 114–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45656-0_10

    Chapter  Google Scholar 

  4. Celotto, E., Ellero, A., Ferretti, P.: Asymmetry degree as a tool for comparing interestingness measures in decision making: the case of Bayesian confirmation measures. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) WIRN 2017 2017. SIST, vol. 102, pp. 289–298. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-95098-3_26

    Chapter  Google Scholar 

  5. Crupi, V., Tentori, K., Gonzalez, M.: On Bayesian measures of evidential support: theoretical and empirical issues. Philos. Sci. 74(2), 229–252 (2007)

    Article  MathSciNet  Google Scholar 

  6. Crupi, V., Festa, R., Buttasi, C.: Towards a grammar of Bayesian confirmation. In: Suárez, M., Dorato, M., Rédei, M. (eds.) Epistemology and Methodology of Science, pp. 73–93. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-3263-8_7

    Chapter  Google Scholar 

  7. Denneberg, D.: Non-Additive Measure and Integral. Kluwer, Dordrecht (1994)

    Book  MATH  Google Scholar 

  8. Eells, E., Fitelson, B.: Symmetries and asymmetries in evidential support. Philos. Stud. 107(2), 129–142 (2002)

    Article  Google Scholar 

  9. Finch, H.A.: Confirming power of observations metricized for decisions among hypotheses. Philos. Sci. 27(4), 293–307 (1960)

    Article  MathSciNet  Google Scholar 

  10. Fitelson, B.: The plurality of Bayesian measures of confirmation and the problem of measure sensitivity. Philos. Sci. 66, 362–378 (1999)

    Article  MathSciNet  Google Scholar 

  11. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 1–32 (2006)

    Article  Google Scholar 

  12. Glass, D.H.: Entailment and symmetry in confirmation measures of interestingness. Inform. Sci. 279, 552–559 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Good, I.J.: Probability and the Weighing of Evidence. Charles Griffin, London (1950)

    MATH  Google Scholar 

  14. Greco, S., Słowiński, R., Szczęch, I.: Analysis of symmetry properties for Bayesian confirmation measures. In: Li, T., et al. (eds.) RSKT 2012. LNCS (LNAI), vol. 7414, pp. 207–214. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31900-6_27

    Chapter  Google Scholar 

  15. Greco, S., Słowiński, R., Szczȩch, I.: Properties of rule interestingness measures and alternative approaches to normalization of measures. Inf. Sci. 216, 1–16 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Keynes, J.: A Treatise on Probability. Macmillan, London (1921)

    MATH  Google Scholar 

  17. Mortimer, H.: The Logic of Induction. Prentice Hall, Paramus (1988)

    MATH  Google Scholar 

  18. Rips, L.: Two kinds of reasoning. Psychol. Sci. 12(2), 129–134 (2001)

    Article  Google Scholar 

  19. Susmaga, R., Szczȩch, I.: Can interestingness measures be usefully visualized? Int. J. Appl. Math. Comput. Sci. 25, 323–336 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Torra, V., Guillen, M., Santolino, M.: Continuous m-dimensional distorted probabilities. Inf. Fusion 44, 97–102 (2018)

    Article  Google Scholar 

  21. Vassend, O.: Confirmation measures and sensitivity. Philos. Sci. 82(5), 892–904 (2015)

    Article  MathSciNet  Google Scholar 

  22. Wang, S.S.: Insurance pricing and increased limits ratemaking by proportional hazards transforms. Insur. Math. Econ. 17(1), 43–54 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wirch, J.L., Hardy, M.R.: A synthesis of risk measures for capital adequacy. Insur. Math. Econ. 25(3), 337–347 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Ellero or Paola Ferretti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ellero, A., Ferretti, P. (2020). Distorted Probabilities and Bayesian Confirmation Measures. In: Torra, V., Narukawa, Y., Nin, J., Agell, N. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2020. Lecture Notes in Computer Science(), vol 12256. Springer, Cham. https://doi.org/10.1007/978-3-030-57524-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57524-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57523-6

  • Online ISBN: 978-3-030-57524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics