Skip to main content

Certifying Decision Trees Against Evasion Attacks by Program Analysis

  • Conference paper
  • First Online:
Book cover Computer Security – ESORICS 2020 (ESORICS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12309))

Included in the following conference series:

Abstract

Machine learning has proved invaluable for a range of different tasks, yet it also proved vulnerable to evasion attacks, i.e., maliciously crafted perturbations of input data designed to force mispredictions. In this paper we propose a novel technique to verify the security of decision tree models against evasion attacks with respect to an expressive threat model, where the attacker can be represented by an arbitrary imperative program. Our approach exploits the interpretability property of decision trees to transform them into imperative programs, which are amenable for traditional program analysis techniques. By leveraging the abstract interpretation framework, we are able to soundly verify the security guarantees of decision tree models trained over publicly available datasets. Our experiments show that our technique is both precise and efficient, yielding only a minimal number of false positives and scaling up to cases which are intractable for a competitor approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://apron.cri.ensmp.fr/library/0.9.10/mlapronidl/Polka.html.

  2. 2.

    http://archive.ics.uci.edu/ml/machine-learning-databases/adult.

  3. 3.

    https://www.kaggle.com/harlfoxem/housesalesprediction.

  4. 4.

    https://www.openml.org/data/get_csv/49817/wine_quality.arff.

References

  1. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_25

    Chapter  Google Scholar 

  2. Biggio, B., Roli, F.: Wild patterns: ten years after the rise of adversarial machine learning. Pattern Recognit. 84, 317–331 (2018)

    Article  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, Belmont (1984)

    MATH  Google Scholar 

  5. Calzavara, S., Lucchese, C., Tolomei, G.: Adversarial training of gradient-boosted decision trees. In: Proceedings of CIKM. ACM (2019)

    Google Scholar 

  6. Calzavara, S., Lucchese, C., Tolomei, G., Abebe, S.A., Orlando, S.: Treant: training evasion-aware decision trees. Data Min. Knowl. Discov. (2020, to appear). https://doi.org/10.1007/s10618-020-00694-9

  7. Chen, H., Zhang, H., Boning, D.S., Hsieh, C.: Robust decision trees against adversarial examples. In: Proceedings of ICML. PMLR (2019)

    Google Scholar 

  8. Chen, H., Zhang, H., Si, S., Li, Y., Boning, D.S., Hsieh, C.: Robustness verification of tree-based models. In: Proceedings of NeurIPS, pp. 12317–12328 (2019)

    Google Scholar 

  9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of POPL. ACM (1977)

    Google Scholar 

  10. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proceedings of POPL. ACM (1979)

    Google Scholar 

  11. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Proceedings of POPL. ACM Press (1978)

    Google Scholar 

  12. Dreossi, T., Jha, S., Seshia, S.A.: Semantic adversarial deep learning. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 3–26. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_1

    Chapter  Google Scholar 

  13. Einziger, G., Goldstein, M., Sa’ar, Y., Segall, I.: Verifying robustness of gradient boosted models. In: Proceedings of AAAI, pp. 2446–2453. AAAI Press (2019)

    Google Scholar 

  14. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.T.: AI2: safety and robustness certification of neural networks with abstract interpretation. In: Proceedings of Security and Privacy. IEEE Computer Society (2018)

    Google Scholar 

  16. Goodfellow, I., McDaniel, P., Papernot, N.: Making machine learning robust against adversarial inputs. Commun. ACM 61(7), 56–66 (2018)

    Article  Google Scholar 

  17. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

    Chapter  Google Scholar 

  18. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_52

    Chapter  Google Scholar 

  19. Kantchelian, A., Tygar, J.D., Joseph, A.D.: Evasion and hardening of tree ensemble classifiers. In: Proceedings of ICML. JMLR.org (2016)

    Google Scholar 

  20. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  21. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: Proceedings of ICLR. OpenReview.net (2018)

    Google Scholar 

  22. Miné, A.: The octagon abstract domain. Higher-Order Symb. Comput. 19, 31–100 (2006). https://doi.org/10.1007/s10990-006-8609-1

    Article  MATH  Google Scholar 

  23. Ranzato, F., Zanella, M.: Abstract interpretation of decision tree ensemble classifiers. In: Proceedings of AAAI. AAAI Press (2020)

    Google Scholar 

  24. Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., Jaspan, C.: Lessons from building static analysis tools at google. Commun. ACM 61(4), 58–66 (2018)

    Article  Google Scholar 

  25. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of ICLR (2014)

    Google Scholar 

  26. Törnblom, J., Nadjm-Tehrani, S.: An abstraction-refinement approach to formal verification of tree ensembles. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 301–313. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26250-1_24

    Chapter  Google Scholar 

  27. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis of neural networks. In: Proceedings of NeurIPS 2018 (2018)

    Google Scholar 

  28. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. In: Proceedings of USENIX Security. USENIX Association (2018)

    Google Scholar 

  29. Xiang, W., et al.: Verification for machine learning, autonomy, and neural networks survey. CoRR abs/1810.01989 (2018). http://arxiv.org/abs/1810.01989

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Calzavara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Calzavara, S., Ferrara, P., Lucchese, C. (2020). Certifying Decision Trees Against Evasion Attacks by Program Analysis. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds) Computer Security – ESORICS 2020. ESORICS 2020. Lecture Notes in Computer Science(), vol 12309. Springer, Cham. https://doi.org/10.1007/978-3-030-59013-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59013-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59012-3

  • Online ISBN: 978-3-030-59013-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics