Skip to main content

Geolocating Time: Digitisation and Reverse Engineering of a Roman Sundial

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

The sundial of Euporus was discovered in 1878 within the ancient Roman city of Aquileia (Italy), in a quite unusual location at the centre of the city’s horse race track. Studies have tried to demonstrate that the sundial had been made for a more southern location than the one it was found at, although no specific alternative positions have been suggested. This paper showcases both the workflow designed to fully digitise it in 3D and analyses on the use of the artefact undertaken from it. The final 3D reconstruction achieves accuracies of a few millimetres, thus offering the opportunity to analyse small details of its surface and to perform non-trivial measurements. We also propose a mathematical approach to compute the object’s optimal working latitude as well as the gnomon position and orientation. The algorithm is designed as an optimization problem where the sundial’s inscriptions and the Sun positions during daytime are considered to obtain the optimal configuration. The complete 3D model of the object is used to get all the geometrical information needed to validate the results of computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akca, D., Remondino, F., Novák, D., Hanusch, T., Schrotter, G., Gruen, A.: Recording and modeling of cultural heritage objects with coded structured light projection systems. In: 2nd International Conference on Remote Sensing in Archaeology, pp. 375–382. Institute of Geodesy and Photogrammetry, ETH Zurich (2006)

    Google Scholar 

  2. Akça, M.D.: 3D Modeling of Cultural Heritage Objects With a Structured Light System (2012)

    Google Scholar 

  3. Auber, P.A.: L’orologio solare orizzontale del circo di aquileia (ii sec. d.c.). il “plintio di euporus”. prima parte. Atti dell’Istituto Veneto di Scienze, Lettere ed Arti, Classe di scienze fisiche, matematiche e naturali CLXIII, pp. 231–298 (2004–2005)

    Google Scholar 

  4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  5. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  6. Horn, B.K.: Closed-form solution of absolute orientation using unit quaternions. JOSA A 4(4), 629–642 (1987)

    Article  Google Scholar 

  7. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans. Graph. (ToG) 32(3), 29 (2013)

    Article  Google Scholar 

  8. Kenner, F.: Sonnenuhren aus aquileia, mittheilungen der k.k. central-commission zur erfortschung und erhaltung der kunst und historischen denkmale. VI Jahrgang, Neue Folge, Wien (1880)

    Google Scholar 

  9. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)

    Article  MathSciNet  Google Scholar 

  10. Lancaster, L.C.: Concrete Vaulted Construction in Imperial Rome: Innovations in Context. Cambridge University Press, New York (2005)

    Book  Google Scholar 

  11. Li, R., Luo, T., Zha, H.: 3D digitization and its applications in cultural heritage. In: Ioannides, M., Fellner, D., Georgopoulos, A., Hadjimitsis, D.G. (eds.) EuroMed 2010. LNCS, vol. 6436, pp. 381–388. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16873-4_29

    Chapter  Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Lynch, C.: Digital collections, digital libraries & the digitization of cultural heritage information. Microf. Imag. Rev. 31(4), 131–145 (2002)

    Google Scholar 

  14. Müller, G., Bendels, G.H., Klein, R.: Rapid synchronous acquisition of geometry and appearance of cultural heritage artefacts. In: VAST, pp. 13–20 (2005)

    Google Scholar 

  15. Pieraccini, M., Guidi, G., Atzeni, C.: 3D digitizing of cultural heritage. J. Cultur. Heritage 2(1), 63–70 (2001)

    Article  Google Scholar 

  16. Pistellato, M., Bergamasco, F., Albarelli, A., Cosmo, L., Gasparetto, A., Torsello, A.: Robust phase unwrapping by probabilistic consensus. Opt. Lasers Eng. 121, 428–440 (2019). https://doi.org/10.1016/j.optlaseng.2019.05.006

    Article  Google Scholar 

  17. Pistellato, M., Bergamasco, F., Cosmo, L., Gasparetto, A., Ressi, D., Albarelli, A.: Neighborhood-Based Recovery of Phase Unwrapping Faults, vol. 2018-August, pp. 2462–2467 (2018). https://doi.org/10.1109/ICPR.2018.8546052

  18. Pistellato, M., Cosmo, L., Bergamasco, F., Gasparetto, A., Albarelli, A.: Adaptive albedo compensation for accurate phase-shift coding, vol. 2018-August, pp. 2450–2455 (2018). https://doi.org/10.1109/ICPR.2018.8545465

  19. Reda, I., Andreas, A.: Solar position algorithm for solar radiation applications. Solar Energy 76(5), 577–589 (2004)

    Article  Google Scholar 

  20. Santagati, C., Inzerillo, L., Di Paola, F.: Image-based modeling techniques for architectural heritage 3D digitalization: limits and potentialities. Int. Arch. Photogrammetr. Remote Sens. Spatial Inf. Sci. 5(w2), 555–560 (2013)

    Article  Google Scholar 

  21. Sitnik, R., Krzeslowski, J.F., Maczkowski, G.: Archiving shape and appearance of cultural heritage objects using structured light projection and multispectral imaging. Opt. Eng. 51(2), 021115 (2012)

    Article  Google Scholar 

  22. Stanco, F., Battiato, S., Gallo, G.: Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks. CRC Press, Boca Raton (2011)

    Google Scholar 

  23. Stein, J.S., Holmgren, W.F., Forbess, J., Hansen, C.W.: PVLIB: open source photovoltaic performance modeling functions for matlab and python. In: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp. 3425–3430. IEEE (2016)

    Google Scholar 

  24. Torsello, A., Rodola, E., Albarelli, A.: Multiview registration via graph diffusion of dual quaternions. In: CVPR 2011, pp. 2441–2448. IEEE (2011)

    Google Scholar 

  25. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vis. 13(2), 119–152 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Bergamasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pistellato, M., Traviglia, A., Bergamasco, F. (2020). Geolocating Time: Digitisation and Reverse Engineering of a Roman Sundial. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12536. Springer, Cham. https://doi.org/10.1007/978-3-030-66096-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66096-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66095-6

  • Online ISBN: 978-3-030-66096-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics