Skip to main content

Biodegradable Electronics

  • Chapter
  • First Online:
Springer Handbook of Semiconductor Devices

Part of the book series: Springer Handbooks ((SHB))

  • 8631 Accesses

Abstract

A general goal in the development of any electronic component is to achieve high-performance operation and mechanical robustness which undergo negligible change over time. Recent advancements in materials science, thin film processing, and nanotechnology have, however, prospected the possibility of devices which can bend and stretch and provide the desired performance for a prescribed timeframe and, then, dissolve, resorb, or physically disintegrate upon the end of their functional time. Degradable or “transient” forms of electronics that disappear via hydrolysis or biochemical reactions, disintegration, and depolymerization could instill intelligence into resorbable implants, “green” environmental sensors, and biodegradable food packaging and lead to new compostable consumer electronic devices or printed boards so as to alleviate the problem of the electronic waste. Research has been driven by questions such as the following: Can we realize soft electronic implants which deliver diagnostics or therapeutic functions and then safely resorb in the body avoiding any additional surgery intervention? Can we realize compliant environmental sensors which harmlessly decompose to eliminate the need for their retrieval?

This chapter starts from reviewing the materials that have demonstrated degradable behavior in various aqueous solutions. The emphasis is on those that are key ingredients to realize active electronic devices and circuits: semiconductors, dielectrics, and conductors. Another important class of materials is the polymers which have been used mostly for encapsulation and substrates. The attention then moves to devices especially on sensors, field effect transistors, LEDs, batteries, and solar cells. The chapter also provides an insight into the dissolution mechanisms and offers some examples of the fabrication methods adopted so far to build the devices. Finally, it ends by listing some of the challenges faced by this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siracusa, V., et al.: Biodegradable polymers for food packaging: a review. Trends Food Sci. Technol. 19(12), 634–643 (2008)

    Article  Google Scholar 

  2. Avella, M., et al.: Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 93(3), 467–474 (2005)

    Article  Google Scholar 

  3. Amsden, B.: Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering. Soft Matter. 3(11), 1335–1348 (2007)

    Article  Google Scholar 

  4. Langer, R., Chasin, M.: Biodegradable Polymers as Drug Delivery Systems. Marcel Dekker, New York (1990)

    Google Scholar 

  5. Lee, J.W., Park, J.-H., Prausnitz, M.R.: Dissolving microneedles for transdermal drug delivery. Biomaterials. 29(13), 2113–2124 (2008)

    Article  Google Scholar 

  6. Wood, D.A.: Biodegradable drug delivery systems. Int. J. Pharm. 7(1), 1–18 (1980)

    Article  MathSciNet  Google Scholar 

  7. Jeong, C.G., Hollister, S.J.: Mechanical, permeability, and degradation properties of 3D designed poly (1, 8 octanediol-co-citrate) scaffolds for soft tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 93(1), 141–149 (2010)

    Google Scholar 

  8. Migneco, F., et al.: Poly (glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds. Biomaterials. 30(33), 6479–6484 (2009)

    Article  Google Scholar 

  9. Yang, J., Webb, A.R., Ameer, G.A.: Novel citric acid-based biodegradable elastomers for tissue engineering. Adv. Mater. 16(6), 511–516 (2004)

    Article  Google Scholar 

  10. King, K.R., et al.: Biodegradable microfluidics. Adv. Mater. 16(22), 2007–2012 (2004)

    Article  Google Scholar 

  11. Dutta, D.: Biodegradable drug delivery material for stent. Google Patents (2003)

    Google Scholar 

  12. Middleton, J.C., Tipton, A.J.: Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 21(23), 2335–2346 (2000)

    Article  Google Scholar 

  13. Hwang, S.-W., et al.: A physically transient form of silicon electronics. Science. 337(6102), 1640–1644 (2012)

    Article  Google Scholar 

  14. https://www.technavio.com/report/global-plastics-polymers-and-elastomers-global-biodegradable-polymers-market-2017-2021. (2015)

  15. Gross, R.A., Kalra, B.: Biodegradable polymers for the environment. Science. 297(5582), 803–807 (2002)

    Article  Google Scholar 

  16. http://www.innoviafilms.com/

  17. https://products.basf.com/en/ecoflex.html

  18. Salvatore, G.A., et al.: Biodegradable and highly deformable temperature sensors for the internet of things. Adv. Funct. Mater. 27(35), 1702390 (2017)

    Article  Google Scholar 

  19. Omenetto, F.G., Kaplan, D.L.: A new route for silk. Nat. Photonics. 2(11), 641–643 (2008)

    Article  Google Scholar 

  20. Tao, H., et al.: Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. 111(49), 17385–17389 (2014)

    Article  Google Scholar 

  21. Xu, J., et al.: Biodegradable natural pectin-based flexible multilevel resistive switching memory for transient electronics. Small. 15(4), 1803970 (2019)

    Google Scholar 

  22. Potts, J., et al.: The biodegradability of synthetic polymers. In: Polymers and Ecological Problems, pp. 61–79. Springer, Boston (1973)

    Chapter  Google Scholar 

  23. Drumright, R.E., Gruber, P.R., Henton, D.E.: Polylactic acid technology. Adv. Mater. 12(23), 1841–1846 (2000)

    Article  Google Scholar 

  24. Bettinger, C.J., Bao, Z.: Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22(5), 651–655 (2010)

    Article  Google Scholar 

  25. Hwang, S.-W., et al.: Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 15(5), 2801–2808 (2015)

    Article  Google Scholar 

  26. Najafabadi, A.H., et al.: Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics. Adv. Mater. 26(33), 5823–5830 (2014)

    Article  Google Scholar 

  27. Salvatore, G.A., et al.: Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nat. Commun. 5, 2982 (2014)

    Article  Google Scholar 

  28. Jin, S.H., et al.: Water-soluble thin film transistors and circuits based on amorphous indium–gallium–zinc oxide. ACS Appl. Mater. Interfaces. 7(15), 8268–8274 (2015)

    Article  Google Scholar 

  29. Woodard, L.N., Grunlan, M.A.: Hydrolytic degradation and erosion of polyester biomaterials. ACS Macro Lett. 7(8), 976–982 (2018)

    Article  Google Scholar 

  30. Vey, E., et al.: Degradation kinetics of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies. Polym. Degrad. Stab. 96(10), 1882–1889 (2011)

    Article  Google Scholar 

  31. Wang, Y.D., et al.: A tough biodegradable elastomer. Nat. Biotechnol. 20(6), 602–606 (2002)

    Article  Google Scholar 

  32. Woodruff, M.A., Hutmacher, D.W.: The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 35(10), 1217–1256 (2010)

    Article  Google Scholar 

  33. Wang, Y., et al.: In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials. 29(24–25), 3415–3428 (2008)

    Article  Google Scholar 

  34. Lei, T., et al.: Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proc. Natl. Acad. Sci. 114(20), 5107–5112 (2017)

    Article  Google Scholar 

  35. Yin, L., et al.: Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node. Appl. Phys. Lett. 106(1), 014105 (2015)

    Article  Google Scholar 

  36. Chang, J.-K., et al.: Materials and processing approaches for foundry-compatible transient electronics. Proc. Natl. Acad. Sci. 114(28), E5522–E5529 (2017)

    Article  Google Scholar 

  37. Yin, L., et al.: Dissolvable metals for transient electronics. Adv. Funct. Mater. 24(5), 645–658 (2014)

    Article  Google Scholar 

  38. Hwang, S.W., et al.: 25th anniversary article: materials for high-performance biodegradable semiconductor devices. Adv. Mater. 26(13), 1992–2000 (2014)

    Article  Google Scholar 

  39. Kirkland, N., Birbilis, N., Staiger, M.: Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater. 8(3), 925–936 (2012)

    Article  Google Scholar 

  40. Kang, S.K., et al.: Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv. Funct. Mater. 25(12), 1789–1797 (2015)

    Article  Google Scholar 

  41. Patrick, E., et al.: Corrosion of tungsten microelectrodes used in neural recording applications. J. Neurosci. Methods. 198(2), 158–171 (2011)

    Article  Google Scholar 

  42. Bowen, P.K., Drelich, J., Goldman, J.: Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv. Mater. 25(18), 2577–2582 (2013)

    Article  Google Scholar 

  43. Badawy, W., Al-Kharafi, F.: Corrosion and passivation behaviors of molybdenum in aqueous solutions of different pH. Electrochim. Acta. 44(4), 693–702 (1998)

    Article  Google Scholar 

  44. Lu, L., et al.: Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implants. Adv. Energy Mater. 8(16), 1703035 (2018)

    Article  Google Scholar 

  45. Kang, S.-K., et al.: Bioresorbable silicon electronic sensors for the brain. Nature. 530(7588), 71 (2016)

    Article  Google Scholar 

  46. Hwang, S.-W., et al.: Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano. 8(6), 5843–5851 (2014)

    Article  Google Scholar 

  47. Kim, D.-H., et al.: Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl. Phys. Lett. 95(13), 133701 (2009)

    Article  Google Scholar 

  48. Kang, S.-K., et al.: Dissolution chemistry and biocompatibility of silicon-and germanium-based semiconductors for transient electronics. ACS Appl. Mater. Interfaces. 7(17), 9297–9305 (2015)

    Article  Google Scholar 

  49. Dagdeviren, C., et al.: Transient, biocompatible electronics and energy harvesters based on ZnO. Small. 9(20), 3398–3404 (2013)

    Article  Google Scholar 

  50. Palmer, D.A., et al.: Solubility measurements of crystalline NiO in aqueous solution as a function of temperature and pH. J. Solut. Chem. 40(4), 680 (2011)

    Article  MathSciNet  Google Scholar 

  51. Trumbo, P., et al.: Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Acad. Nutr. Diet. 101(3), 294 (2001)

    Google Scholar 

  52. Münzenrieder, N., et al.: Room temperature fabricated flexible NiO/IGZO pn diode under mechanical strain. Solid State Electron. 87, 17–20 (2013)

    Article  Google Scholar 

  53. Irimia-Vladu, M., et al.: Green and biodegradable electronics. Mater. Today. 15(7–8), 340–346 (2012)

    Article  Google Scholar 

  54. Irimia-Vladu, M., et al.: Indigo-a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv. Mater. 24(3), 375–380 (2012)

    Article  Google Scholar 

  55. Kang, S.K., et al.: Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv. Funct. Mater. 24(28), 4427–4434 (2014)

    Article  Google Scholar 

  56. Shou, W., et al.: Low-cost manufacturing of bioresorbable conductors by evaporation–condensation-mediated laser printing and sintering of Zn nanoparticles. Adv. Mater. 29(26), 1700172 (2017)

    Article  Google Scholar 

  57. Lee, Y.K., et al.: Room temperature electrochemical sintering of Zn microparticles and its use in printable conducting inks for bioresorbable electronics. Adv. Mater. 29(38), 1702665 (2017)

    Article  Google Scholar 

  58. Chen, X., et al.: CVD-grown monolayer MoS 2 in bioabsorbable electronics and biosensors. Nat. Commun. 9(1), 1690 (2018)

    Article  Google Scholar 

  59. Grayson, A.C.R., et al.: Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat. Mater. 2(11), 767 (2003)

    Article  Google Scholar 

  60. Erbel, R., et al.: Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 369(9576), 1869–1875 (2007)

    Article  Google Scholar 

  61. Miyamoto, A., et al.: Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12(9), 907–913 (2017)

    Article  Google Scholar 

  62. Schiavone, G., et al.: Soft, implantable bioelectronic interfaces for translational research. Adv. Mater. 32(17), e1906512 (2020)

    Article  Google Scholar 

  63. Tybrandt, K., et al.: High-density stretchable electrode grids for chronic neural recording. Adv. Mater. 30(15), 1706520 (2018)

    Article  Google Scholar 

  64. Rochford, A.E., et al.: When bio meets technology: biohybrid neural interfaces. Adv. Mater. 32(15), 1903182 (2020)

    Article  Google Scholar 

  65. Jang, K.-I., et al.: Soft network composite materials with deterministic and bio-inspired designs. Nat. Commun. 6(1), 6566 (2015)

    Article  Google Scholar 

  66. Irimia-Vladu, M., et al.: Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20(23), 4069–4076 (2010)

    Article  Google Scholar 

  67. Guo, X., et al.: Current status and opportunities of organic thin-film transistor technologies. IEEE Trans. Electron Dev. 64(5), 1906–1921 (2017)

    Article  MathSciNet  Google Scholar 

  68. Sirringhaus, H.: Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17(20), 2411–2425 (2005)

    Article  Google Scholar 

  69. Sun, X., Di, C.-a., Liu, Y.: Engineering of the dielectric–semiconductor interface in organic field-effect transistors. J. Mater. Chem. 20(13), 2599–2611 (2010)

    Article  Google Scholar 

  70. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, Hoboken (2006)

    Book  Google Scholar 

  71. Cowley, A., Sze, S.: Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 36(10), 3212–3220 (1965)

    Article  Google Scholar 

  72. Hwang, S.W., et al.: Transient electronics: materials for programmed, functional transformation in transient electronic systems (Adv. Mater. 1/2015). Adv. Mater. 27(1), 187–187 (2015)

    Article  Google Scholar 

  73. Chang, J.K., et al.: Biodegradable electronic systems in 3D, heterogeneously integrated formats. Adv. Mater. 30(11), 1704955 (2018)

    Article  Google Scholar 

  74. Boutry, C.M., et al.: A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv. Mater. 27(43), 6954–6961 (2015)

    Article  Google Scholar 

  75. Yu, K.J., et al.: Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15(7), 782 (2016)

    Article  Google Scholar 

  76. Kozma, P., et al.: Integrated planar optical waveguide interferometer biosensors: a comparative review. Biosens. Bioelectron. 58, 287–307 (2014)

    Article  Google Scholar 

  77. Lee, C.H., et al.: Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Mater. 7, 1–18 (2015)

    Google Scholar 

  78. Koo, J., et al.: Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24(12), 1830 (2018)

    Article  Google Scholar 

  79. Jürgensen, N., et al.: Solution-processed bio-OLEDs with a vitamin-derived riboflavin tetrabutyrate emission layer. ACS Sustain. Chem. Eng. 5(6), 5368–5372 (2017)

    Article  Google Scholar 

  80. Khanra, S., et al.: Self-assembled peptide–polyfluorene nanocomposites for biodegradable organic electronics. Adv. Mater. Interfaces. 2(14), 1500265 (2015)

    Article  Google Scholar 

  81. Lu, D., et al.: Transient light-emitting diodes constructed from semiconductors and transparent conductors that biodegrade under physiological conditions. Adv. Mater. 31(42), 1902739 (2019)

    Article  Google Scholar 

  82. Nizamoglu, S., et al.: Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat. Commun. 7, 10374 (2016)

    Article  Google Scholar 

  83. Jacques, S.L.: Optical properties of biological tissues: a review. Phys. Med. Biol. 58(11), R37 (2013)

    Article  Google Scholar 

  84. Bai, W., et al.: Flexible transient optical waveguides and surface-wave biosensors constructed from monocrystalline silicon. Adv. Mater. 30(32), 1801584 (2018)

    Article  Google Scholar 

  85. Huang, X., et al.: Materials strategies and device architectures of emerging power supply devices for implantable bioelectronics. Small. 16, 1902827 (2020)

    Article  Google Scholar 

  86. Yin, L., et al.: Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv. Mater. 26(23), 3879–3884 (2014)

    Article  Google Scholar 

  87. Huang, X., et al.: A fully biodegradable battery for self-powered transient implants. Small. 14(28), 1800994 (2018)

    Article  Google Scholar 

  88. Kim, Y.J., et al.: Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl. Acad. Sci. 110(52), 20912–20917 (2013)

    Article  Google Scholar 

  89. Tsang, M., et al.: Biodegradable magnesium/iron batteries with polycaprolactone encapsulation: a microfabricated power source for transient implantable devices. Microsyst. Nanoeng. 1, 15024 (2015)

    Article  Google Scholar 

  90. Lee, G., et al.: Fully biodegradable microsupercapacitor for power storage in transient electronics. Adv. Energy Mater. 7(18), 1700157 (2017)

    Article  Google Scholar 

  91. Li, H., et al.: Fully bioabsorbable capacitor as an energy storage unit for implantable medical electronics. Adv. Sci. 6(6), 1801625 (2019)

    Article  Google Scholar 

  92. Thissandier, F., et al.: Are tomorrow's micro-supercapacitors hidden in a forest of silicon nanotrees? J. Power Sources. 269, 740–746 (2014)

    Article  Google Scholar 

  93. Kumar, P., et al.: Melanin-based flexible supercapacitors. J. Mater. Chem. C. 4(40), 9516–9525 (2016)

    Article  Google Scholar 

  94. Moon, E., Blaauw, D., Phillips, J.D.: Subcutaneous photovoltaic infrared energy harvesting for bio-implantable devices. IEEE Trans. Electron Dev. 64(5), 2432–2437 (2017)

    Article  Google Scholar 

  95. Lee, C.H., et al.: Wireless microfluidic systems for programmed, functional transformation of transient electronic devices. Adv. Funct. Mater. 25(32), 5100–5106 (2015)

    Article  Google Scholar 

  96. Koo, J., et al.: Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci. Adv. 6(35), 1–13 (2020)

    Google Scholar 

  97. Li, R., et al.: An analytical model of reactive diffusion for transient electronics. Adv. Funct. Mater. 23(24), 3106–3114 (2013)

    Article  Google Scholar 

  98. Yin, L., et al.: Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics. Adv. Mater. 27(11), 1857–1864 (2015)

    Article  Google Scholar 

  99. Wang, L., et al.: Geometrical and chemical dependent hydrolysis mechanisms of silicon nanomembranes for biodegradable electronics. ACS Appl. Mater. Interfaces. 11(19), 18013–18023 (2019)

    Article  Google Scholar 

  100. Li, R., et al.: Recent progress on biodegradable materials and transient electronics. Bioactive Mater. 3(3), 322–333 (2018)

    Article  Google Scholar 

  101. Meitl, M.A., et al.: Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5(1), 33 (2006)

    Article  Google Scholar 

  102. Hwang, S.W., et al.: High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 26(23), 3905–3911 (2014)

    Article  Google Scholar 

  103. Huang, X., et al.: Biodegradable materials for multilayer transient printed circuit boards. Adv. Mater. 26(43), 7371–7377 (2014)

    Article  Google Scholar 

  104. Mahajan, B.K., et al.: Mechanically milled irregular zinc nanoparticles for printable bioresorbable electronics. Small. 13(17), 1700065 (2017)

    Article  Google Scholar 

  105. Kang, S.-K., et al.: Advanced materials and devices for bioresorbable electronics. Acc. Chem. Res. 51(5), 988–998 (2018)

    Article  Google Scholar 

  106. Lee, Y.K., et al.: Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano. 11(12), 12562–12572 (2017)

    Article  Google Scholar 

  107. Shin, J., et al.: Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 3(1), 37 (2019)

    Article  Google Scholar 

  108. Lewis, D., Chasin, M., Langer, R.: Biodegradable Polymers as Drug Delivery Systems. Biopolymers, pp. 8–24. Marcel Dekker, New York (1990)

    Google Scholar 

  109. Nnorom, I.C., Osibanjo, O.: Overview of electronic waste (e-waste) management practices and legislations, and their poor applications in the developing countries. Resour. Conserv. Recycl. 52(6), 843–858 (2008)

    Article  Google Scholar 

  110. Eu-Eurostat (2016). http://ec.europa.eu/eurostat/web/waste/key-waste-streams/weee

  111. Widmer, R., et al.: Global perspectives on e-waste. Environ. Impact Assess. Rev. 25(5), 436–458 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Antonio Salvatore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salvatore, G.A., Yin, L., Dai, F. (2023). Biodegradable Electronics. In: Rudan, M., Brunetti, R., Reggiani, S. (eds) Springer Handbook of Semiconductor Devices . Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-79827-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79827-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79826-0

  • Online ISBN: 978-3-030-79827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics