Skip to main content

Reasoning About Proportional Lumpability

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2021)

Abstract

In this paper we reason about the notion of proportional lumpability, that generalizes the original definition of lumpability to cope with the state space explosion problem inherent to the computation of the performance indices of large stochastic models. Lumpability is based on a state aggregation technique and applies to Markov chains exhibiting some structural regularity.

Proportional lumpability formalizes the idea that the transition rates of a Markov chain can be altered by some factors in such a way that the new resulting Markov chain is lumpable. It allows one to derive exact performance indices for the original process.

We prove that the problem of computing the coarsest proportional lumpability which refines a given initial partition is well-defined, i.e., it has always a unique solution. Moreover, we introduce a polynomial time algorithm for solving the problem. This provides us further insights on both the notion of proportional lumpability and on generalizations of partition refinement techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzetta, G., Marin, A., Piazza, C., Rossi, S.: Lumping-based equivalences in Markovian automata: algorithms and applications to product-form analyses. Inf. Comput. 260, 99–125 (2018). https://doi.org/10.1016/j.ic.2018.04.002

    Article  MathSciNet  MATH  Google Scholar 

  2. Baarir, S., Beccuti, M., Dutheillet, C., Franceschinis, G., Haddad, S.: Lumping partially symmetrical stochastic models. Perform. Eval. 68(1), 21–44 (2011). https://doi.org/10.1016/j.peva.2010.09.002

    Article  Google Scholar 

  3. Balsamo, S., Marin, A.: Queueing networks. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 34–82. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_2

    Chapter  Google Scholar 

  4. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31, 59–75 (1994). https://doi.org/10.1017/S0021900200107338

    Article  MathSciNet  MATH  Google Scholar 

  5. Courtois, P.J., Semal, P.: Computable bounds for conditional steady-state probabilities in large Markov chains and queueing models. IEEE J. Sel. Areas Commun. 4(6), 926–937 (1986)

    Article  Google Scholar 

  6. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains. Elsevier Inf. Process. Lett. 87(6), 309–315 (2003)

    Article  MathSciNet  Google Scholar 

  7. Franceschinis, G., Muntz, R.: Bounds for quasi-lumpable Markov chains. Perform. Eval. 20(1–3), 223–243 (1994). https://doi.org/10.1016/0166-5316(94)90015-9

    Article  MATH  Google Scholar 

  8. Franceschinis, G., Muntz, R.: Computing bounds for the performance indices of quasi-lumpable stochastic well-formed nets. IEEE Trans. Software Eng. 20(7), 516–525 (1994). https://doi.org/10.1109/32.297940

    Article  MATH  Google Scholar 

  9. Frostig, E.: Jointly optimal allocation of a repairman and optimal control of service rate for machine repairman problem. Eur. J. Oper. Res. 116(2), 274–280 (1999)

    Article  Google Scholar 

  10. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45804-2

    Book  MATH  Google Scholar 

  11. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge Press (1996). https://doi.org/10.1017/CBO9780511569951

  12. Hooghiemstra, G., Koole, G.: On the convergence of the power series algorithm. Perform. Eval. 42(1), 21–39 (2000)

    Article  Google Scholar 

  13. Katehakis, M., Derman, C.: Optimal repair allocation in a series system. Math. Oper. Res. 9(4), 615–623 (1984)

    Article  MathSciNet  Google Scholar 

  14. Katehakis, M., Smit, L.: A successive lumping procedure for a class of Markov chains. Probab. Eng. Inf. Sci. 26(4), 483–508 (2012)

    Article  MathSciNet  Google Scholar 

  15. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York (1976)

    MATH  Google Scholar 

  16. Kuo, J., Wei, J.: Lumping analysis in monomolecular reaction systems. Analysis of approximately Lumpable system. Ind. Eng. Chem. Fundam. 8(1), 124–133 (1969)

    Article  Google Scholar 

  17. Ledoux, J.: A necessary condition for weak lumpability in finite Markov processes. Oper. Res. Lett. 13(3), 165–168 (1993)

    Article  MathSciNet  Google Scholar 

  18. Li, G., Rabitz, H.: A general analysis of exact lumping in chemical kinetics. Chem. Eng. Sci. 44(6), 1413–1430 (1989)

    Article  Google Scholar 

  19. Marin, A., Piazza, C., Rossi, S.: Proportional Lumpability. In: André, É., Stoelinga, M. (eds.) FORMATS 2019. LNCS, vol. 11750, pp. 265–281. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29662-9_16

    Chapter  Google Scholar 

  20. Marin, A., Piazza, C., Rossi, S.: Proportional lumpability and proportional bisimilarity. Acta Informatica (2021). https://doi.org/10.1007/s00236-021-00404-y

  21. Marin, A., Rossi, S.: On the relations between Markov chain lumpability and reversibility. Acta Informatica 54(5), 447–485 (2017). https://doi.org/10.1007/s00236-016-0266-1

  22. Molloy, M.K.: Performance analysis using stochastic petri nets. IEEE Trans. Comput. 31(9), 913–917 (1982). https://doi.org/10.1109/TC.1982.1676110

  23. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)

    Article  MathSciNet  Google Scholar 

  24. Plateau, B.: On the stochastic structure of parallelism and synchronization models for distributed algorithms. SIGMETRICS Perf. Eval. Rev. 13(2), 147–154 (1985). https://doi.org/10.1145/317795.317819

    Article  Google Scholar 

  25. Schweitzer, P.: Aggregation methods for large Markov chains. In: Proceedings of the International Workshop on Computer Performance and Reliability, pp. 275–286. North Holland (1984)

    Google Scholar 

  26. Sumita, U., Rieders, M.: Lumpability and time-reversibility in the aggregation-disaggregation method for large Markov chains. Commun. Stat. Stoch. Models 5, 63–81 (1989). https://doi.org/10.1080/15326348908807099

    Article  MathSciNet  MATH  Google Scholar 

  27. Ungureanu, V., Melamed, B., Katehakis, M., Bradford, P.: Deferred assignment scheduling in cluster-based servers. Clust. Comput. 9(1), 57–65 (2006)

    Article  Google Scholar 

  28. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Rossi .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 Proof of Lemma 1

First notice that each block \(A\in \mathcal P\) can be written both as a union of blocks of \(\mathcal P_1\) and as a union of blocks of \(\mathcal P_2\), i.e.,

$$A=A_{11}\cup A_{12}\cup \dots \cup A_{1k_1}=A_{21}\cup A_{22}\cup \dots \cup A_{2k_2}$$

with \(A_{ij}\in \mathcal P_i\).

Since \(\mathcal P_1\) and \(\mathcal P_2\) are proportional partitions, there exist two functions \(\kappa _1,\kappa _2\) from \(\mathcal S\) to \(\mathbb R^+\) that witness this fact. This implies that if we take two states s and \(s'\) which are not in A and are in a block \(B_i\) of \(\mathcal P_i\), it holds that:

$$ \frac{q(s,A)}{\kappa _i(s)} =\frac{\sum _{j=1}^{k_i} q(s,A_{ij})}{\kappa _i(s)}=\frac{\sum _{j=1}^{k_i} q(s',A_{ij})}{\kappa _i(s')}=\frac{q(s',A)}{\kappa _i(s')}$$

This last can be rewritten as:

$$q(s,A)=\frac{\kappa _i(s)}{\kappa _i(s')}q(s',A)$$

For each block \(B\in \mathcal P\) we fix a representative element \(b\in B\). For each \(b'\in B\) there exists at least one finite sequence \(b_0,b_1,\dots ,b_m\) such that \(b_0=b\), \(b_m=b'\) and for each \(h=0,\dots ,m-1\) there exists \(B_{h}\) such that \(b_h,b_{h+1}\in B_h\) and either \(B_{h}\in \mathcal P_1\) or \(B_h\in \mathcal P_2\). For each \(b'\in B\) we fix one of such sequences. For the sake of clarity, let us consider a simple case where \(b,b_1\in B_0 \in \mathcal P_1\), \(b_1,b_2\in B_1 \in \mathcal P_2\), and \(b_2,b'\in B_2\in \mathcal P_1\). Let \(A\in \mathcal P\) with \(A\ne B\). In virtue of the last equation, we have:

$$q(b,A)=\frac{\kappa _1(b_1)}{\kappa _1(b)}q(b_1,A)=\frac{\kappa _1(b)}{\kappa _1(b_1)}\frac{\kappa _2(b_1)}{\kappa _2(b_2)}q(b_2,A)= \frac{\kappa _1(b)}{\kappa _1(b_1)}\frac{\kappa _2(b_1)}{\kappa _2(b_2)}\frac{\kappa _1(b_2)}{\kappa _1(b')}q(b',A) $$

In the general case we obtain:

$$q(b,A)=K(b,b') q(b',A)$$

where \(K(b,b')\) is a product of fractions involving values of \(\kappa _1\) and \(\kappa _2\) that depends on the sequence that we have fixed from b to \(b'\). Since both b and the sequence have been fixed we can define \(\overline{K}(b')=K(b,b')\). As a consequence, if \(b', b''\in B\) we obtain that for each \(A\in \mathcal P\) with \(A\ne B\) it holds

$$\overline{K}(b') q(b',A)=q(b,A)=\overline{K}(b'') q(b'',A)$$

This means that \(\mathcal P\) is a proportional partition.    \(\square \)

1.2 Proof of Lemma 4

Let \(S_j=A_1\cup \dots \cup A_n\) and \(S_k=B_1\cup \dots B_m\) with \(A_f,B_h\in \mathcal P_{\sim }\). Let \(\kappa \) be a function witnessing that \(\mathcal P_{\sim }\) is a proportional lumpability. If by contradiction there exists a block \(C\in \mathcal P_{\sim }\) such that \(s,s'\in C\), then we would have

$$\frac{q(s,A_f)}{\kappa (s)}=\frac{q(s',A_f)}{\kappa (s')}$$

for each \(f=1,\dots , n\) and

$$\frac{q(s,B_h)}{\kappa (s)}=\frac{q(s',B_h)}{\kappa (s')}$$

for each \(h=1,\dots , m\). As a consequence by summing for \(f= 1,\dots , n\) and \(h=1,\dots , m\) we have

$$\frac{q(s,S_j)}{\kappa (s)}=\frac{q(s',S_j)}{\kappa (s')} \text{ and } \frac{q(s, S_k)}{\kappa (s)}=\frac{q(s',S_k)}{\kappa (s')}$$

Since by hypothesis it holds \(q(s,S_k)\ne 0\) and \(q(s',S_k)\ne 0\) we get

$$\frac{q(s,S_j)}{q(s,S_k)}= \frac{q(s',S_j)}{q(s',S_k)}$$

which contradicts the hypothesis.    \(\square \)

1.3 Proof of Theorem 5

The existence of at least one solution is trivial, since the identity relation is a proportional lumpability.

As far as the uniqueness is concerned, let us consider the maximum proportional partition problem over X(t) and \(\mathcal P\). Let us assume by contradiction that the set of proportional partitions that refines \(\mathcal P\) has at least two different maximal elements. This means that there are two different partitions \(\mathcal Q_1\) and \(\mathcal Q_2\) such that:

  1. a.

    \(\mathcal Q_i\) is a proportional partition;

  2. b.

    \(\mathcal Q_i\) refines \(\mathcal P\);

  3. c.

    each \(\mathcal Q'\) coarser than \(\mathcal Q_i\) and refining \(\mathcal P\) is not a proportional partition.

By Lemma 1 the smallest partition \(\mathcal Q\) that is coarser than both \(\mathcal Q_1\) and \(\mathcal Q_2\) is a proportional partition. Moreover, since both \(\mathcal Q_1\) and \(\mathcal Q_2\) refine \(\mathcal P\), it holds that \(\mathcal Q\) refines \(\mathcal P\). This contradicts item c.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Piazza, C., Rossi, S. (2021). Reasoning About Proportional Lumpability. In: Abate, A., Marin, A. (eds) Quantitative Evaluation of Systems. QEST 2021. Lecture Notes in Computer Science(), vol 12846. Springer, Cham. https://doi.org/10.1007/978-3-030-85172-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85172-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85171-2

  • Online ISBN: 978-3-030-85172-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics