Skip to main content

An Improvement of the Pivoting Strategy in the Bunch and Kaufman Decomposition, Within Truncated Newton Methods

  • Conference paper
  • First Online:

Part of the book series: AIRO Springer Series ((AIROSS,volume 8))

Abstract

In this work we consider the solution of large scale (possibly nonconvex) unconstrained optimization problems. We focus on Truncated Newton methods which represent one of the commonest methods to tackle such problems. In particular, we follow the approach detailed in Caliciotti et al. (Comput Optim Appl 77:627–651, 2020), where a modified version of the Bunch and Kaufman decomposition (Bunch and Kaufman, Math Comput 31:163–179, 1977) is proposed for solving the Newton equation. Such decomposition is used within SYMMBK routine as proposed by Chandra (Conjugate gradient methods for partial differential equations, Ph.D. thesis, Yale University, New Haven, 1978; see also Conn et al., Trust–Region Methods, MPS–SIAM Series on Optimization, Philadelphia, PA, 2000; HSL: A collection of Fortran codes for large scale scientific computation, https://www.hsl.rl.ac.uk/; Marcia, Appl Numer Math 58(4):449–458, 2008) for iteratively solving symmetric possibly indefinite linear systems. The proposal in Caliciotti et al. (Comput Optim Appl 77:627–651, 2020) enabled to overcome a relevant drawback of nonconvex problems, namely the computed search direction might not be gradient-related. Here we propose further extensions of such approach, aiming at improving the pivoting strategy of the Bunch and Kaufman decomposition and enhancing its flexibility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bunch, J., Kaufman, L.: Some stable methods for calculating inertia and solving symmetric linear equations. Math. Comput. 31, 163–179 (1977)

    Article  Google Scholar 

  2. Caliciotti, A., Fasano, G., Nash, S.G., Roma, M.: An adaptive truncation criterion, for linesearch-based truncated Newton methods in large scale nonconvex optimization. Oper. Res. Lett. 46, 7–12 (2018)

    Article  MathSciNet  Google Scholar 

  3. Caliciotti, A., Fasano, G., Nash, S.G., Roma, M.: Data and performance profiles applying an adaptive truncation criterion, within linesearch-based truncated Newton methods, in large scale nonconvex optimization. Data in Brief 17, 246–255 (2018)

    Article  Google Scholar 

  4. Caliciotti, A., Fasano, G., Roma, M.: Preconditioned nonlinear conjugate gradient methods based on a modified secant equation. Appl. Math. Comput. 318, 196–214 (2018)

    Article  MathSciNet  Google Scholar 

  5. Caliciotti, A., Fasano, G., Potra, F., Roma, M.: Issues on the use of a modified Bunch and Kaufman decomposition for large scale Newton’s equation. Comput. Optim. Appl. 77, 627–651 (2020)

    Article  MathSciNet  Google Scholar 

  6. Chandra, R.: Conjugate gradient methods for partial differential equations. Ph.D. thesis, Yale University, New Haven (1978). Research Report 129

    Google Scholar 

  7. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust–Region Methods. MPS–SIAM Series on Optimization, Philadelphia, PA (2000)

    Book  Google Scholar 

  8. Dembo, R., Steihaug, T.: Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Program. 26, 190–212 (1983)

    Article  MathSciNet  Google Scholar 

  9. Dembo, R., Eisenstat, S., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)

    Article  MathSciNet  Google Scholar 

  10. Fasano, G.: Planar–conjugate gradient algorithm for large–scale unconstrained optimization, Part 1: theory. J. Optim. Theory Appl. 125, 523–541 (2005)

    Article  MathSciNet  Google Scholar 

  11. Fasano, G.: Planar–conjugate gradient algorithm for large–scale unconstrained optimization, Part 2: application. J. Optim. Theory Appl. 125, 543–558 (2005)

    Article  MathSciNet  Google Scholar 

  12. Fasano, G.: Lanczos-conjugate gradient method and pseudoinverse computation, in unconstrained optimization. J. Optim. Theory Appl. 132, 267–285 (2006)

    Article  Google Scholar 

  13. Fasano, G., Roma, M.: Iterative computation of negative curvature directions in large scale optimization. Comput. Optim. Appl. 38, 81–104 (2007)

    Article  MathSciNet  Google Scholar 

  14. Fasano, G., Roma, M.: Preconditioning Newton–Krylov methods in nonconvex large scale optimization. Comput. Optim. Appl. 56, 253–290 (2013)

    Article  MathSciNet  Google Scholar 

  15. Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone linesearch for unconstrained optimization. J. Optim. Theory Appl. 60, 401–419 (1989)

    Article  MathSciNet  Google Scholar 

  16. HSL: A collection of Fortran codes for large scale scientific computation. https://www.hsl.rl.ac.uk/

  17. Marcia, R.: On solving sparse symmetric linear systems whose definiteness is unknown. Appl. Numer. Math. 58(4), 449–458 (2008)

    Article  MathSciNet  Google Scholar 

  18. Nash, S.: A survey of truncated-Newton methods. J. Comput. Appl. Math. 124, 45–59 (2000)

    Article  MathSciNet  Google Scholar 

  19. Nash, S., Sofer, A.: Assessing a search direction within a truncated-Newton method. Oper. Res. Lett. 9, 219–221 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Fasano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fasano, G., Roma, M. (2022). An Improvement of the Pivoting Strategy in the Bunch and Kaufman Decomposition, Within Truncated Newton Methods. In: Amorosi, L., Dell’Olmo, P., Lari, I. (eds) Optimization in Artificial Intelligence and Data Sciences. AIRO Springer Series, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-95380-5_5

Download citation

Publish with us

Policies and ethics