Skip to main content

Abstract

The presence of soluble salts due to rising damp triggers significant damage to brick masonries, and their distribution needs to be effectively assessed before targeting maintenance intervention. For this purpose, a novel non-invasive approach based on reflectance spectroscopy analysis has been proposed for the preliminary characterisation of soluble salts on masonry surfaces by using a portable spectroradiometer, working in the visible-short wave infrared (Vis-SWIR, 350 ÷ 2500 nm) spectral range. The setup of the technique included the analysis of powdery samples: pure salts, salts mixtures, salts blended with brick powder. Then on field application on a Venetian palace, subjected to rising damp of salty water, was carried out. The results highlight the feasibility of the methodology both in the laboratory and in situ: thanks to instrument portability, low cost, and an adequate possibility to detect salts this technique helps in the planning of the preservation project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lubelli, B., et al.: Experimental research on hygroscopic behaviour of porous specimens contaminated with salts. Constr. Build. Mater. 18(5), 339–348 (2004)

    Article  Google Scholar 

  2. Snethlage, R., Wendler, E.: Moisture cycles and sandstone degradation. In: Snethlage, R., Baer, N.S. (eds.) Saving our Architectural Heritage: the Conservation of Historic Stone Structures, pp. 7–24. Wiley, Chichester (1997)

    Google Scholar 

  3. Moropoulou, A., et al.: Preservation planning as a tool for a sustainable historic city. WIT Trans. Ecology Environ. 39, 327–336 (2000)

    Google Scholar 

  4. Theoulakis, P., Moropoulou, A.: Salt crystal growth as weathering mechanism of porous stone on historic masonry. J. Porous Mater. 6(4), 345–358 (1999)

    Article  CAS  Google Scholar 

  5. Nunes, C., et al.: Study of nitrate contaminated samples from a historic building with the hygroscopic moisture content method: contribution of laboratory data to interpret results practical significance. J. Cult. Herit. 30, 57–69 (2018)

    Article  Google Scholar 

  6. Giovannacci, D., et al.: Non intrusive tools to detect salts contamination in masonry: case study of fontaine-chaalis church. In: Optics for Arts, Architecture, and Archaeology VI, vol. 10331, p. 1033103. International Society for Optics and Photonics (2017)

    Google Scholar 

  7. Avdelidis, N.P., Moropoulou, A.: Applications of infrared thermography for the investigation of historic structures. J. Cult. Herit. 5(1), 119–127 (2004)

    Article  Google Scholar 

  8. EN 16682:2017. Conservation of cultural heritage - Methods of measurement of moisture content, or water content, in materials constituting immovable cultural heritage. CEN, Comité européen de normalisation Norme européenne (2017)

    Google Scholar 

  9. Nasraoui, M., Nowik, W., Lubelli, B.: A comparative study of hygroscopic moisture content, electrical conductivity and ion chromatography for salt assessment in plasters of historical buildings. Const. Build. Mater. 23(5), 1731–1735 (2009)

    Article  Google Scholar 

  10. Cipra, J.E., et al.: Measuring radiance characteristics of soil with a field spectroradiometer. Soil Sci. Soc. Am. J. 35(6), 1014–1017 (1971)

    Article  Google Scholar 

  11. Stenberg, B., et al.: Visible and near infrared spectroscopy in soil science. In: Sparks, D.L. (ed.) Advances in Agronomy, vol. 107, pp. 163–215. Academic Press, Burlington (2010)

    Google Scholar 

  12. Fang, Q., et al.: Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: A review. J. Spectr. 2018, 1–14 (2018)

    Article  Google Scholar 

  13. Farifteh, J., et al.: Spectral characteristics of salt-affected soils: a laboratory experiment. Geoderma 145(3–4), 196–206 (2008)

    Article  CAS  Google Scholar 

  14. Edwards, B.L., et al.: Simple infrared techniques for measuring beach surface moisture. Earth Surf. Proc. Land. 38(2), 192–197 (2013)

    Article  Google Scholar 

  15. Ma, C., et al.: Analysis of the effects of salt content on soil spectral characteristics. In: Proceedings of the 3rd International Conference on Agro-Geoinformatics, pp. 1–6. IEEE (2014)

    Google Scholar 

  16. Monnard, A., et al.: Influence of moisture content on colour of granular materials. Part I: experiments on yellow ochre. Granular Matter 18(3), 47 (2016)

    Google Scholar 

  17. Bacci, M., et al.: Non-invasive spectroscopic measurements on the Il ritratto della figliastra by Giovanni Fattori: identification of pigments and colourimetric analysis. J. Cult. Herit. 4(4), 329–336 (2003)

    Article  Google Scholar 

  18. Camaiti, M., et al.: Hyperspectral sensor for gypsum detection on monumental buildings. J. Geophys. Eng. 8(3), S126–S131 (2011)

    Article  Google Scholar 

  19. Suzuki, A., et al.: Laboratory study of the sulfation of carbonate stones through SWIR hyperspectral investigation. J. Cult. Herit. 32, 30–37 (2018)

    Article  Google Scholar 

  20. Benvenuti, M., et al.: A portable hyper spectral device for monitoring the chemical and mineralogical composition of historical buildings surfaces. In: Ferrari, A. (ed.) 4th International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, pp. 167–168. Il Cairo, Egypt (2009)

    Google Scholar 

  21. Falchi, L., et al.: Rising damp in historical buildings: a venetian perspective. Build. Environ. 131, 117–127 (2018)

    Article  Google Scholar 

  22. Alparone, L., et al.: Hyperspectral instruments as potential tools for monitoring decay processes of historical building surfaces. In: Fioravanti, M., Mecca, S. (eds.) The Safeguard of Cultural Heritage: A Challenge From the Past for the Europe of Tomorrow, pp. 192–194. Firenze University Press, Firenze (2011)

    Google Scholar 

  23. Bacci, M.: Fibre optics applications to works of art. Sens. Actuators B Chem. 29(1–3), 190–196 (1995)

    Article  CAS  Google Scholar 

  24. Balas, C., et al.: A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value. J. Cult. Herit. 4, 330–337 (2003)

    Article  Google Scholar 

  25. Camaiti, M., et al.: Monitoring of chemical and physical characteristics of stone surfaces by a portable spectroradiometer. Geophys. Res. Abstr. 15, 13552 (2013)

    Google Scholar 

  26. Campbell, J.B., Wynne, R.H.: Introduction to Remote Sensing. Guilford Press, New York (2011)

    Google Scholar 

  27. Clark, R.N., et al.: High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. Solid Earth 95(B8), 12653–12680 (1990)

    Article  Google Scholar 

  28. Clark, R.N.: Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual Remote Sens. 3(3–58), 2–2 (1999)

    CAS  Google Scholar 

  29. Biscontin, G., et al.: Indagine sui fenomeni di risalita capillare nelle murature di Venezia. In: Il mattone di Venezia. Contributi presentati al concorso di idee su patologia, diagnosi e terapia del mattone di Venezia, pp. 33–65

    Google Scholar 

  30. Fassina, V., et al.: Evaluation of compatibility and durability of a hydraulic lime-based plaster applied on brick wall masonry of historical buildings affected by rising damp phenomena. J. Cult. Herit. 3(1), 45–51 (2002)

    Article  Google Scholar 

  31. Corradini M.: Investigation of the rising damp phenomenon in historical Venetian buildings by a new multianalytical approach. Ms thesis, Ca’ Foscari University of Venice (2020)

    Google Scholar 

  32. Steiger, M., et al.: Hydration of MgSO4·H2O and generation of stress in porous materials. Cryst. Growth Des. 8(1), 336–343 (2008)

    Article  CAS  Google Scholar 

  33. Yang, P., et al.: Hygroscopicity measurement of sodium carbonate, β-alanine and internally mixed β-alanine/Na2CO3 particles by ATR-FTIR. J. Environ. Sci. 87, 250–259 (2020)

    Article  Google Scholar 

  34. Sælensminde, J., Samarakoon, S.S.M.: Deterioration of concrete structures due to salt crystallization; influence of salt types and relative humidity. In: Hansen, K.K., Rode, C., Nilsson, L-O. (eds.) Proceedings on International RILEM Conference on Materials, Systems and Structures in Civil Engineering Conference segment on Moisture in Materials and Structures, pp. 120–127. RILEM Publications SARL (2016)

    Google Scholar 

  35. Tian, Y., et al.: Raman spectroscopy of sodium chloride under high-pressure and high-temperature. arXiv preprint arXiv:1903.11824 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dafne Cimino or Laura Falchi .

Editor information

Editors and Affiliations

Ethics declarations

Scientific activity performed with the contribution of the Provveditorato for the Public Works of Veneto, Trentino Alto Adige and Friuli Venezia Giulia, provided through the concessionary of State Consorzio Venezia Nuova and coordinated by CORILA. The research was promoted thanks also to the interest and support of the Patto per lo Sviluppo della Città di Venezia (Comune di Venezia).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cimino, D., Falchi, L., Corradini, M., Lucero Gomez, P., Balliana, E., Zendri, E. (2022). Reflectance Spectroscopy as a Non-invasive Technique for Preliminary Characterization of Soluble Salts on Historical Masonries. In: Osman, A., Moropoulou, A. (eds) Advanced Nondestructive and Structural Techniques for Diagnosis, Redesign and Health Monitoring for the Preservation of Cultural Heritage. Springer Proceedings in Materials, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-031-03795-5_4

Download citation

Publish with us

Policies and ethics