Skip to main content

Alternative Probability Weighting Functions in Behavioral Portfolio Selection

  • Conference paper
  • First Online:
Studies in Theoretical and Applied Statistics (SIS 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 406))

Included in the following conference series:

  • 342 Accesses

Abstract

We propose some portfolio selection models based on Cumulative Prospect Theory. In particular, we consider alternative probability weighting functions in order to model probability distortion. The resulting mathematical programming problem turns out to be highly non-linear and non-differentiable. So, we adopt a solution approach based on the metaheuristic Particle Swarm Optimization. We select the portfolios under the behavioral approach and perform an application to the European equity market as represented by the STOXX Europe 600 Index and compare their performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Wakker [21] provides a thorough treatment on PT.

  2. 2.

    Tversky and Kahneman [20] estimated these parameters: \(a = b = 0.88\), and \(\lambda =2.25\). We will refer to this set of parameters as TK sentiment.

  3. 3.

    See e.g., [1, 2, 6, 7, 17].

  4. 4.

    See [3].

  5. 5.

    See [16] for a review.

  6. 6.

    Henceforth and in the applications, we will refer to this probability distortion as TK function.

  7. 7.

    In the same article, Prelec derives two other probability weighting functions: the conditionally-invariant exponential-power and the projection-invariant hyperbolic-logarithm function.

  8. 8.

    The CRS weighting function has been adopted by Tversky and Kahneman [16] in a behavioral model for the evaluation of European options.

  9. 9.

    In particular, in the applications we adopt the TK, Prelec, and CRS functions.

  10. 10.

    Three probability weighting functions, times two reference points, times fiftyone out-of-sample weeks.

References

  1. Abdellaoui, M.: Parameter-free elicitation of utility and probability weighting functions. Manag. Sci. 46, 1497–1512 (2000)

    Article  MATH  Google Scholar 

  2. Abdellaoui, M., Barrios, C., Wakker, P.P.: Reconciling introspective utility with revealed preference: experimental arguments based on prospect theory. J. Econ. 138, 336–378 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdellaoui, M., L’Haridon, O., Zank, H.: Separating curvature and elevation: a parametric probability weighting function. J. Risk Uncertain. 41, 39–65 (2010)

    Article  MATH  Google Scholar 

  4. Allais, M.: The general theory of random choices in relation to the invariant cardinal utility function and the specific probability function. The \((U, \theta )-\)Model: a general overview. In: Munier, B.R. (ed.) Risk, Decision and Rationality, pp. 231–289. D. Reidel Publishing Company, Dordrecht, Holland (1988)

    Google Scholar 

  5. Barro, D., Corazza, M., Nardon, M.: Behavioral aspects in portfolio selection. In: Corazza, M., Gilli, M., Perna, C., Pizzi, C., Sibillo, M. (eds.) Mathematical and Statistical Methods for Actuarial Sciences and Finance (2021)

    Google Scholar 

  6. Bleichrodt, H., Pinto, J.L.: A parameter-free elicitation of the probability weighting function in medical decision analysis. Manag. Sci. 46, 1485–1496 (2000)

    Article  Google Scholar 

  7. Bleichrodt, H., Pinto, J.L., Wakker, P.P.: Making descriptive use of prospect theory to improve the prescriptive use of expected utility. Manag. Sci. 47, 1498–1514 (2001)

    Article  MATH  Google Scholar 

  8. Corazza, M., di Tollo, G., Fasano, G., Pesenti, R.: A novel hybrid PSO-based metaheuristic for costly portfolio selection problems. Ann. Oper. Res. 304, 109–137 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Corazza, M., Fasano, G., Gusso, R.: Particle swarm optimization with no-smooth penalty reformulation, for a complex portfolio selection problem. Appl. Math. Comput. 224, 611–624 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Diecidue, E., Schmidt, U., Zank, H.: Parametric weighting functions. J. Econ. Theory 144(3), 1102–1118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldstein, W.M., Einhorn, H.J.: Expression theory and the preference reversal phenomena. Psychol. Rev. 94(2), 236–254 (1987)

    Article  Google Scholar 

  12. Gonzalez, R., Wu, G.: On the shape of the probability weighting function. Cognit. Psychol. 38, 129–166 (1999)

    Article  Google Scholar 

  13. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karmarkar, U.S.: Subjectively weighted utility: a descriptive extension of the expected utility model. Organ. Behav. Hum. Perform. 21, 61–72 (1978)

    Article  Google Scholar 

  15. Markowitz, H.: Portfolio selection. J. Fin. 7, 77–91 (1952)

    Google Scholar 

  16. Nardon, M., Pianca, P.: European option pricing under cumulative prospect theory with constant relative sensitivity probability weighting functions. Comput. Manag. Sci. 16, 249–274 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Prelec, D.: The probability weighting function. Econometrica 66, 497–527 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Quiggin, J.: A theory of anticipated utility. J. Econ. Behav. Organ. 3, 323–343 (1982)

    Article  Google Scholar 

  19. Shefrin, H., Statman, M.: Behavioral portfolio theory. J. Fin. Quant. Anal. 35, 127–151 (2000)

    Article  Google Scholar 

  20. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of the uncertainty. J. Risk Uncertain. 5, 297–323 (1992)

    Article  MATH  Google Scholar 

  21. Wakker, P.P.: Prospect Theory: For Risk and Ambiguity. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  22. Wu, G., Gonzalez, R.: Curvature of the probability weighting function. Manag. Sci. 42(12), 1676–1690 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Corazza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barro, D., Corazza, M., Nardon, M. (2022). Alternative Probability Weighting Functions in Behavioral Portfolio Selection. In: Salvati, N., Perna, C., Marchetti, S., Chambers, R. (eds) Studies in Theoretical and Applied Statistics . SIS 2021. Springer Proceedings in Mathematics & Statistics, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-031-16609-9_9

Download citation

Publish with us

Policies and ethics