Abstract
Reflectance Transformation Imaging (RTI) is a popular technique that allows the recovery of per-pixel reflectance information by capturing an object under different light conditions. This can be later used to reveal surface details and interactively relight the subject. Such process, however, typically requires dedicated hardware setups to recover the light direction from multiple locations, making the process tedious when performed outside the lab.
We propose a novel RTI method that can be carried out by recording videos with two ordinary smartphones. The flash led-light of one device is used to illuminate the subject while the other captures the reflectance. Since the led is mounted close to the camera lenses, we can infer the light direction for thousands of images by freely moving the illuminating device while observing a fiducial marker surrounding the subject. To deal with such amount of data, we propose a neural relighting model that reconstructs object appearance for arbitrary light directions from extremely compact reflectance distribution data compressed via Principal Components Analysis (PCA). Experiments shows that the proposed technique can be easily performed on the field with a resulting RTI model that can outperform state-of-the-art approaches involving dedicated hardware setups.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(l_u\) and \(l_v\) range between \([-1 \ldots 1]\) respectively as they are the first two components of a (unitary-norm) 3D light direction vector pointing toward the light source.
References
Ackermann, J., Fuhrmann, S., Goesele, M.: Geometric point light source calibration. In: VMV, pp. 161–168 (2013)
Ahmad, J., Sun, J., Smith, L., Smith, M.: An improved photometric stereo through distance estimation and light vector optimization from diffused maxima region. Pattern Recogn. Lett. 50, 15–22 (2014)
Ciortan, I., Pintus, R., Marchioro, G., Daffara, C., Giachetti, A., Gobbetti, E., et al.: A practical reflectance transformation imaging pipeline for surface characterization in cultural heritage (2016)
Coules, H., Orrock, P., Seow, C.E.: Reflectance transformation imaging as a tool for engineering failure analysis. Eng. Fail. Anal. 105, 1006–1017 (2019)
Dulecha, T.G., Fanni, F.A., Ponchio, F., Pellacini, F., Giachetti, A.: Neural reflectance transformation imaging. Visual Comput. 36, 2161–2174 (2020). https://doi.org/10.1007/s00371-020-01910-9
Earl, G., et al.: Reflectance transformation imaging systems for ancient documentary artefacts. In: Electronic Visualisation and the Arts (EVA 2011), pp. 147–154 (2011)
Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014)
Giachetti, A., Ciortan, I., Daffara, C., Pintus, R., Gobbetti, E., et al.: Multispectral RTI analysis of heterogeneous artworks (2017)
Giachetti, A., Ciortan, I.M., Daffara, C., Marchioro, G., Pintus, R., Gobbetti, E.: A novel framework for highlight reflectance transformation imaging. Comput. Vis. Image Underst. 168, 118–131 (2018)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, New York (2003)
Kinoshita, S., Yoshioka, S., Miyazaki, J.: Physics of structural colors. Rep. Progress Phys. 71(7), 076401 (2008). https://doi.org/10.1088/0034-4885/71/7/076401
Kinsman, T.: An easy to build reflectance transformation imaging (RTI) system. J. Biocommun. 40(1), 10–14 (2016)
Kotoula, E., Kyranoudi, M.: Study of ancient Greek and Roman coins using reflectance transformation imaging. E-conservation Mag. 25, 74–88 (2013)
Malzbender, T., Gelb, D., Wolters, H.: Polynomial texture maps. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 519–528 (2001)
Manfredi, M., et al.: Measuring changes in cultural heritage objects with reflectance transformation imaging. In: 2013 Digital Heritage International Congress (DigitalHeritage), vol. 1, pp. 189–192. IEEE (2013)
Manrique Tamayo, S.N., Valcárcel Andrés, J.C., Osca Pons, M.: Applications of reflectance transformation imaging for documentation and surface analysis in conservation. Int. J. Conserv. Sci. 4, 535–548 (2013)
Mudge, M., et al.: Image-based empirical information acquisition, scientific reliability, and long-term digital preservation for the natural sciences and cultural heritage. In: Eurographics (Tutorials), vol. 2(4) (2008)
Mudge, M., Malzbender, T., Schroer, C., Lum, M.: New reflection transformation imaging methods for rock art and multiple-viewpoint display. In: Ioannides, M., Arnold, D., Niccolucci, F., Mania, K. (eds.) The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, vol. 6, pp. 195–202. Vast (2006)
Mytum, H., Peterson, J.: The application of reflectance transformation imaging (RTI) in historical archaeology. Hist. Archaeol. 52(2), 489–503 (2018)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076
Palma, G., Corsini, M., Cignoni, P., Scopigno, R., Mudge, M.: Dynamic shading enhancement for reflectance transformation imaging. J. Comput. Cult. Heritage (JOCCH) 3(2), 1–20 (2010)
Pintus, R., Dulecha, T.G., Ciortan, I., Gobbetti, E., Giachetti, A.: State-of-the-art in multi-light image collections for surface visualization and analysis. In: Computer Graphics Forum, vol. 38, pp. 909–934. Wiley Online Library (2019)
Pistellato, M., Albarelli, A., Bergamasco, F., Torsello, A.: Robust joint selection of camera orientations and feature projections over multiple views, pp. 3703–3708 (2016). https://doi.org/10.1109/ICPR.2016.7900210
Pistellato, M., Bergamasco, F., Albarelli, A., Torsello, A.: Dynamic optimal path selection for 3D triangulation with multiple cameras, vol. 9279, pp. 468–479 (2015)
Pistellato, M., Bergamasco, F., Albarelli, A., Torsello, A.: Robust cylinder estimation in point clouds from pairwise axes similarities, pp. 640–647 (2019). https://doi.org/10.5220/0007401706400647
Pitard, G., et al.: Discrete modal decomposition: a new approach for the reflectance modeling and rendering of real surfaces. Mach. Vis. Appl. 28(5), 607–621 (2017)
Ponchio, F., Corsini, M., Scopigno, R.: Relight: a compact and accurate RTI representation for the web. Graph. Models 105, 101040 (2019)
Porter, S.T., Huber, N., Hoyer, C., Floss, H.: Portable and low-cost solutions to the imaging of paleolithic art objects: a comparison of photogrammetry and reflectance transformation imaging. J. Archaeol. Sci. Rep. 10, 859–863 (2016)
Rainer, G., Jakob, W., Ghosh, A., Weyrich, T.: Neural BTF compression and interpolation. In: Computer Graphics Forum, vol. 38, pp. 235–244. Wiley Online Library (2019)
Ren, P., Dong, Y., Lin, S., Tong, X., Guo, B.: Image based relighting using neural networks. ACM Trans. Graph. (ToG) 34(4), 1–12 (2015)
Schuster, C., Zhang, B., Vaish, R., Gomes, P., Thomas, J., Davis, J.: RTI compression for mobile devices. In: Proceedings of the 6th International Conference on Information Technology and Multimedia, pp. 368–373. IEEE (2014)
Shen, C.: Analysis of detrended time-lagged cross-correlation between two nonstationary time series. Phys. Lett. A 379(7), 680–687 (2015)
Smys, S., Chen, J.I.Z., Shakya, S.: Survey on neural network architectures with deep learning. J. Soft Comput. Paradigm (JSCP) 2(03), 186–194 (2020)
Suzuki, S., Be, K.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985). https://doi.org/10.1016/0734-189X(85)90016-7, https://www.sciencedirect.com/science/article/pii/0734189X85900167
Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)
Uribe, M.D.G., Wheatley, D.W.: Rock art an digital technologies: the application of reflectance transformation imaging (RTI) and 3D laser scanning to the study of late bronze age Iberian stelae. Menga: Revista de prehistoria de Andalucía (4), 187–203 (2013)
Vieira, M., Guimarães, P.V., Violante-Carvalho, N., Benetazzo, A., Bergamasco, F., Pereira, H.: A low-cost stereo video system for measuring directional wind waves. J. Marine Sci. Eng. 8(11), 831 (2020)
Watteeuw, L., et al.: Light, shadows and surface characteristics: the multispectral portable light dome. Appl. Phys. A 122(11), 1–7 (2016)
Xu, Z., Sunkavalli, K., Hadap, S., Ramamoorthi, R.: Deep image-based relighting from optimal sparse samples. ACM Trans. Graph. (ToG) 37(4), 1–13 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pistellato, M., Bergamasco, F. (2023). On-the-Go Reflectance Transformation Imaging with Ordinary Smartphones. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13801. Springer, Cham. https://doi.org/10.1007/978-3-031-25056-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-25056-9_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25055-2
Online ISBN: 978-3-031-25056-9
eBook Packages: Computer ScienceComputer Science (R0)