Skip to main content

Embedding Shepard’s Interpolation into CNN Models for Unguided Depth Completion

  • Conference paper
  • First Online:
AIxIA 2023 – Advances in Artificial Intelligence (AIxIA 2023)

Abstract

When acquiring sparse data samples, an interpolation method is often needed to fill in the missing information. An example application, known as “depth completion”, consists in estimating dense depth maps from sparse observations (e.g. LiDAR acquisitions). To do this, algorithmic methods fill the depth image by performing a sequence of basic image processing operations, while recent approaches propose data-driven solutions, mostly based on Convolutional Neural Networks (CNNs), to predict the missing information. In this work, we combine learning-based and classical algorithmic approaches to ideally exploit the performance of the former with the ability to generalize of the latter. First, we define a novel architecture block called IDWBlock. This component allows to embed Shepard’s interpolation (or Inverse Distance Weighting, IDW) into a CNN model, with the advantage of requiring a small number of parameters regardless of the kernel size. Second, we propose two network architectures involving a combination of the IDWBlock and learning-based depth completion techniques. In the experimental section, we tested the models’ performances on the KITTI depth completion benchmark and NYU-depth-v2 dataset, showing how they present strong robustness to input sparsity under different densities and patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We can assume without loss of generality that I is square and that \(S=2a+1, a \in \mathbb {N}\). If that is not the case, I can be padded with zeros to meet such condition.

References

  1. Alhashim, I., Wonka, P.: High quality monocular depth estimation via transfer learning. ArXiv abs/1812.11941 (2018)

    Google Scholar 

  2. Barron, J.T., Poole, B.: The fast bilateral solver. ArXiv abs/1511.03296 (2015)

    Google Scholar 

  3. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D object detection for autonomous driving. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2147–2156 (2016). https://doi.org/10.1109/CVPR.2016.236

  4. Cheng, X., Wang, P., Yang, R.: Depth estimation via affinity learned with convolutional spatial propagation network. In: European Conference on Computer Vision (2018)

    Google Scholar 

  5. Chodosh, N., Wang, C., Lucey, S.: Deep convolutional compressed sensing for lidar depth completion. ArXiv abs/1803.08949 (2018)

    Google Scholar 

  6. Choi, K., Chong, K.: Modified inverse distance weighting interpolation for particulate matter estimation and mapping. Atmosphere 13(5), 846 (2022). https://doi.org/10.3390/atmos13050846. https://www.mdpi.com/2073-4433/13/5/846

  7. Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput. 38(157), 181–200 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Gasparetto, A., et al.: Cross-dataset data augmentation for convolutional neural networks training. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 910–915. IEEE (2018). https://doi.org/10.1109/ICPR.2018.8545812

  9. He, L., Wang, G., Hu, Z.: Learning depth from single images with deep neural network embedding focal length. IEEE Trans. Image Process. 27(9), 4676–4689 (2018)

    Article  MathSciNet  Google Scholar 

  10. Huang, Z., Fan, J., Cheng, S., Yi, S., Wang, X., Li, H.: HMS-Net: hierarchical multi-scale sparsity-invariant network for sparse depth completion. IEEE Trans. Image Process. 29, 3429–3441 (2018)

    Article  MATH  Google Scholar 

  11. Ku, J., Harakeh, A., Waslander, S.L.: In defense of classical image processing: fast depth completion on the CPU. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 16–22 (2018). https://doi.org/10.1109/CRV.2018.00013

  12. Li, B., Zhang, T., Xia, T.: Vehicle detection from 3D Lidar using fully convolutional network. ArXiv abs/1608.07916 (2016)

    Google Scholar 

  13. Li, J., Heap, A.D.: A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol. Inform. 6(3), 228–241 (2011). https://doi.org/10.1016/j.ecoinf.2010.12.003. https://www.sciencedirect.com/science/article/pii/S1574954110001147

  14. Li, Y., Ibanez-Guzman, J.: Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems. IEEE Signal Process. Mag. 37(4), 50–61 (2020)

    Article  Google Scholar 

  15. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  16. Ma, F., Cavalheiro, G.V., Karaman, S.: Self-supervised sparse-to-dense: self-supervised depth completion from lidar and monocular camera. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 3288–3295 (2018)

    Google Scholar 

  17. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–8 (2017)

    Google Scholar 

  18. Märkert, F., Sunkel, M., Haselhoff, A., Rudolph, S.: Segmentation-guided domain adaptation for efficient depth completion. ArXiv abs/2210.09213 (2022). https://api.semanticscholar.org/CorpusID:252918440

  19. Mulkal, M., Wandi, R.: Inverse distance weight spatial interpolation for topographic surface 3D modelling. TECHSI - Jurnal Teknik Informatika 11, 385 (2019). https://doi.org/10.29103/techsi.v11i3.1934

  20. Nielson, R., Franke, R.: Scattered data interpolation and applications: a tutorial and survey. In: Hagen, H., Roller, D. (eds. ) Geometric Modeling. Computer Graphics – Systems and Applications, pp. 131–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-76404-2_6

  21. Pistellato, M., Albarelli, A., Bergamasco, F., Torsello, A.: Robust joint selection of camera orientations and feature projections over multiple views. In: Proceedings - International Conference on Pattern Recognition, pp. 3703–3708 (2016). https://doi.org/10.1109/ICPR.2016.7900210

  22. Pistellato, M., Bergamasco, F., Albarelli, A., Torsello, A.: Dynamic optimal path selection for 3D triangulation with multiple cameras. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9279, pp. 468–479. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23231-7_42

    Chapter  Google Scholar 

  23. Pistellato, M., Bergamasco, F., Albarelli, A., Torsello, A.: Robust cylinder estimation in point clouds from pairwise axes similarities. In: ICPRAM 2019 - Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods, pp. 640–647 (2019). https://doi.org/10.5220/0007401706400647

  24. Pistellato, M., Cosmo, L., Bergamasco, F., Gasparetto, A., Albarelli, A.: Adaptive albedo compensation for accurate phase-shift coding. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 2450–2455. IEEE (2018). https://doi.org/10.1109/ICPR.2018.8545465

  25. Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4151–4160 (2017)

    Google Scholar 

  26. Ranjan, A., et al.: Competitive collaboration: joint unsupervised learning of depth, camera motion, optical flow and motion segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12232–12241 (2019). https://doi.org/10.1109/CVPR.2019.01252

  27. Rho, K., Ha, J., Kim, Y.: GuideFormer: transformers for image guided depth completion. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6240–6249 (2022). https://doi.org/10.1109/CVPR52688.2022.00615

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference, pp. 517–524 (1968)

    Google Scholar 

  30. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  31. Skala, V.: RBF interpolation with CSRBF of large data sets. Procedia Comput. Sci. 108, 2433–2437 (2017)

    Article  Google Scholar 

  32. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: International Conference on 3D Vision (3DV) (2017)

    Google Scholar 

  33. Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M.E., Weinberger, K.Q.: Pseudo-lidar from visual depth estimation: Bridging the gap in 3D object detection for autonomous driving. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8437–8445 (2018)

    Google Scholar 

  34. Wei, P., Cagle, L., Reza, T., Ball, J., Gafford, J.: Lidar and camera detection fusion in a real-time industrial multi-sensor collision avoidance system. Electronics 7(6), 84 (2018)

    Article  Google Scholar 

  35. Wong, A., Fei, X., Tsuei, S., Soatto, S.: Unsupervised depth completion from visual inertial odometry. IEEE Robot. Autom. Lett. 5(2), 1899–1906 (2020). https://doi.org/10.1109/LRA.2020.2969938

    Article  Google Scholar 

  36. Wright, G.B.: Radial Basis Function Interpolation: Numerical and Analytical Developments. University of Colorado, Boulder (2003)

    Google Scholar 

  37. Ye, J., Ji, Y., Wang, X., Ou, K., Tao, D., Song, M.: Student becoming the master: Knowledge amalgamation for joint scene parsing, depth estimation, and more. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2824–2833 (2019)

    Google Scholar 

  38. Zhang, Y., Guo, X., Poggi, M., Zhu, Z., Huang, G., Mattoccia, S.: CompletionFormer: depth completion with convolutions and vision transformers. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18527–18536 (2023)

    Google Scholar 

  39. Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., Yang, J.: Pattern-affinitive propagation across depth, surface normal and semantic segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4101–4110 (2019). https://doi.org/10.1109/CVPR.2019.00423

  40. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  41. Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning of optical flow, depth, and egomotion. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 989–997 (2018)

    Google Scholar 

  42. Zou, Y.L., Hu, F.L., Zhou, C.C., Li, C.L., Dunn, K.J.: Analysis of radial basis function interpolation approach. Appl. Geophys. 10(4), 397–410 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Pistellato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mengistu, S.F., Pistellato, M., Bergamasco, F. (2023). Embedding Shepard’s Interpolation into CNN Models for Unguided Depth Completion. In: Basili, R., Lembo, D., Limongelli, C., Orlandini, A. (eds) AIxIA 2023 – Advances in Artificial Intelligence. AIxIA 2023. Lecture Notes in Computer Science(), vol 14318. Springer, Cham. https://doi.org/10.1007/978-3-031-47546-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47546-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47545-0

  • Online ISBN: 978-3-031-47546-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics