Skip to main content

On the Use of the SYMMBK Algorithm for Computing Negative Curvature Directions Within Newton–Krylov Methods

  • Conference paper
  • First Online:
Optimization in Green Sustainability and Ecological Transition (ODS 2023)

Part of the book series: AIRO Springer Series ((AIROSS,volume 12))

Included in the following conference series:

  • 53 Accesses

Abstract

In this paper, we consider the issue of computing negative curvature directions, for nonconvex functions, within Newton–Krylov methods for large scale unconstrained optimization. This issue has been widely investigated in the literature, and different approaches have been proposed. We focus on the well known SYMMBK method proposed for solving large scale symmetric possibly indefinite linear systems [3, 5, 7, 20], and show how to exploit it to yield an effective negative curvature direction. The distinguishing feature of our proposal is that the computation of such negative curvature direction is iteratively carried out, without storing no more than a couple of additional vectors. The results of a preliminary numerical experience are reported showing the reliability of the novel approach we propose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avelino, C.P., Moguerza, J.M., Olivares, A., Prieto, F.J.: Combining and scaling descent and negative curvature directions. Math. Program. 128, 285–319 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bray, A.J., Dean, D.S.: Statistics of critical points of Gaussian fields on large-dimensional spaces. Phys. Rev. Lett. 98(15), 150201 (2007)

    Google Scholar 

  3. Bunch, J., Kaufman, L.: Some stable methods for calculating inertia and solving symmetric linear equations. Math. Comput. 31, 163–179 (1977)

    Article  Google Scholar 

  4. Caliciotti, A., Fasano, G., Potra, F., Roma, M.: Issues on the use of a modified Bunch and Kaufman decomposition for large scale Newton’s equation. Comput. Optim. Appl. 77, 627–651 (2020)

    Article  MathSciNet  Google Scholar 

  5. Chandra, R.: Conjugate gradient methods for partial differential equations. Ph.D. thesis, Yale University, New Haven (1978). Research report 129

    Google Scholar 

  6. Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y.: The loss surfaces of multilayer networks. In: Artificial Intelligence and Statistics, pp. 192–204. PMLR (2015)

    Google Scholar 

  7. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-region methods. In: MPS-SIAM Series on Optimization, Philadelphia, PA (2000)

    Google Scholar 

  8. Curtis, F.E., Robinson, D.P.: Exploiting negative curvature in deterministic and stochastic optimization. Math. Program. 176, 69–94 (2019)

    Article  MathSciNet  Google Scholar 

  9. Dauphin, Y.N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y.: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  10. Dembo, R., Eisenstat, S., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19, 400–408 (1982)

    Article  MathSciNet  Google Scholar 

  11. Dembo, R., Steihaug, T.: Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Program. 26, 190–212 (1983)

    Article  MathSciNet  Google Scholar 

  12. Fasano, G.: Planar-conjugate gradient algorithm for large-scale unconstrained optimization, part 1: theory. J. Optim. Theory Appl. 125, 523–541 (2005)

    Article  MathSciNet  Google Scholar 

  13. Fasano, G.: Planar-conjugate gradient algorithm for large-scale unconstrained optimization, part 2: application. J. Optim. Theory Appl. 125, 543–558 (2005)

    Article  MathSciNet  Google Scholar 

  14. Fasano, G., Lucidi, S.: A nonmonotone truncated Newton–Krylov method exploiting negative curvature directions, for large scale unconstrained optimization. Optim. Lett. 3, 521–535 (2009)

    Article  MathSciNet  Google Scholar 

  15. Fasano, G., Piermarini, C., Roma, M.: Bridging the gap between trust-region methods (TRMs) and linesearch based methods (LBMs) for nonlinear programming: quadratic sub-problems. Department of Management, Università Ca’Foscari Venezia Working Paper (8) (2022)

    Google Scholar 

  16. Fasano, G., Roma, M.: Iterative computation of negative curvature directions in large scale optimization. Comput. Optim. Appl. 38, 81–104 (2007)

    Article  MathSciNet  Google Scholar 

  17. Ferris, M., Lucidi, S., Roma, M.: Nonmonotone curvilinear linesearch methods for unconstrained optimization. Comput. Optim. Appl. 6, 117–136 (1996)

    Article  MathSciNet  Google Scholar 

  18. Gould, N.I.M., Lucidi, S., Roma, M., Toint, P.L.: Exploiting negative curvature directions in linesearch methods for unconstrained optimization. Optim. Methods Softw. 14, 75–98 (2000)

    Article  MathSciNet  Google Scholar 

  19. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst: a constrained and unconstrained testing environment with safe threads. Comput. Optim. Appl. 60, 545–557 (2015)

    Article  MathSciNet  Google Scholar 

  20. HSL 2013: a collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/

  21. Lucidi, S., Rochetich, F., Roma, M.: Curvilinear stabilization techniques for truncated Newton methods in large scale unconstrained optimization. SIAM J. Optim. 8, 916–939 (1998)

    Article  MathSciNet  Google Scholar 

  22. McCormick, G.: A modification of Armijo’s step-size rule for negative curvature. Math. Program. 13, 111–115 (1977)

    Article  MathSciNet  Google Scholar 

  23. Moré, J., Sorensen, D.: On the use of directions of negative curvature in a modified Newton method. Math. Program. 16, 1–20 (1979)

    Article  MathSciNet  Google Scholar 

  24. Nash, S.: A survey of truncated-Newton methods. J. Comput. Appl. Math. 124, 45–59 (2000)

    Article  MathSciNet  Google Scholar 

  25. Olivares, A., Moguerza, J.M., Prieto, F.J.: Nonconvex optimization using negative curvature within a modified linesearch. Eur. J. Oper. Res. 189, 706–722 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Fasano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fasano, G., Piermarini, C., Roma, M. (2024). On the Use of the SYMMBK Algorithm for Computing Negative Curvature Directions Within Newton–Krylov Methods. In: Bruglieri, M., Festa, P., Macrina, G., Pisacane, O. (eds) Optimization in Green Sustainability and Ecological Transition. ODS 2023. AIRO Springer Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-031-47686-0_9

Download citation

Publish with us

Policies and ethics