Skip to main content

Indexing Finite-State Automata Using Forward-Stable Partitions

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2024)

Abstract

An index on a finite-state automaton is a data structure able to locate specific patterns on the automaton’s paths and consequently on the regular language accepted by the automaton itself. Cotumaccio and Prezza [SODA ’21], introduced a data structure able to solve pattern matching queries on automata, generalizing the famous FM-index for strings of Ferragina and Manzini [FOCS ’00]. The efficiency of their index depends on the width of a particular partial order of the automaton’s states, the smaller the width of the partial order, the faster is the index. However, computing the partial order of minimal width is NP-hard. This problem was mitigated by Cotumaccio [DCC ’22], who relaxed the conditions on the partial order, allowing it to be a partial preorder. This relaxation yields the existence of a unique partial preorder of minimal width that can be computed in polynomial time. In the paper at hand, we present a new class of partial preorders and show that they have the following useful properties: (i) they can be computed in polynomial time, (ii) their width is never larger than the width of Cotumaccio’s preorders, and (iii) there exist infinite classes of automata on which the width of Cotumaccio’s preorder is linearly larger than the width of our preorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Regular languages meet prefix sorting. In: Chawla, S. (ed.) Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, 5–8 January 2020, pp. 911–930. SIAM (2020). https://doi.org/10.1137/1.9781611975994.55

  2. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Wheeler languages. Inf. Comput. 281, 104820 (2021). https://doi.org/10.1016/J.IC.2021.104820

    Article  MathSciNet  Google Scholar 

  3. Becker, R., et al.: Sorting finite automata via partition refinement. In: Gørtz, I.L., Farach-Colton, M., Puglisi, S.J., Herman, G. (eds.) 31st Annual European Symposium on Algorithms, ESA 2023, Amsterdam, The Netherlands, 4–6 September 2023. LIPIcs, vol. 274, pp. 15:1–15:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.ESA.2023.15

  4. Becker, R., Kim, S.H., Prezza, N., Tosoni, C.: Indexing finite-state automata using forward-stable partitions (2024). https://arxiv.org/abs/2406.02763

  5. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm. SRS Res. Rep. 124 (1994)

    Google Scholar 

  6. Cotumaccio, N.: Graphs can be succinctly indexed for pattern matching in \(O(\vert E\vert ^{2}+\vert V\vert ^{5/2})\) time. In: Bilgin, A., Marcellin, M.W., Serra-Sagristà, J., Storer, J.A. (eds.) Data Compression Conference, DCC 2022, Snowbird, UT, USA 22–25, March 2022, pp. 272–281. IEEE (2022). https://doi.org/10.1109/DCC52660.2022.00035

  7. Cotumaccio, N., Prezza, N.: On indexing and compressing finite automata. In: Marx, D. (ed.) Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, 10–13 January 2021, pp. 2585–2599. SIAM (2021). https://doi.org/10.1137/1.9781611976465.153

  8. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In: 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, Redondo Beach, California, USA, 12–14 November 2000, pp. 390–398. IEEE Computer Society (2000). https://doi.org/10.1109/SFCS.2000.892127

  9. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: a framework for BWT-based data structures. Theor. Comput. Sci. 698, 67–78 (2017). https://doi.org/10.1016/J.TCS.2017.06.016

    Article  MathSciNet  Google Scholar 

  10. Gibney, D., Thankachan, S.V.: On the hardness and inapproximability of recognizing wheeler graphs. In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European Symposium on Algorithms, ESA 2019, Munich/Garching, Germany, 9–11 September 2019. LIPIcs, vol. 144, pp. 51:1–51:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPICS.ESA.2019.51

  11. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987). https://doi.org/10.1137/0216062

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Nicola Cotumaccio for insightful discussions on the topic of this paper. Ruben Becker, Sung-Hwan Kim, Nicola Prezza, and Carlo Tosoni are funded by the European Union (ERC, REGINDEX, 101039208). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Tosoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Becker, R., Kim, SH., Prezza, N., Tosoni, C. (2025). Indexing Finite-State Automata Using Forward-Stable Partitions. In: Lipták, Z., Moura, E., Figueroa, K., Baeza-Yates, R. (eds) String Processing and Information Retrieval. SPIRE 2024. Lecture Notes in Computer Science, vol 14899. Springer, Cham. https://doi.org/10.1007/978-3-031-72200-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72200-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72199-1

  • Online ISBN: 978-3-031-72200-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics