Skip to main content

A Survey of Modern Hybrid Particle Swarm Optimization Algorithms

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2025)

Abstract

Bio-inspired, population-based meta-heuristic for global optimization are very popular algorithms for addressing complex computational problems that traditional methods struggle to solve. Among the existing algorithms, the swarm intelligence algorithm Particle Swarm Optimization (PSO) is one of the most popular, thanks to its simplicity and effectiveness in multiple scenarios. This article focuses on recent hybrid optimization methods that extend the basic functioning of PSO. Hybridization, in this context, is defined as the integration of PSO with a different technique, to take advantage of the strengths of both algorithms. According to our findings, many variants have been proposed. The most frequent solutions consist of the hybridization of PSO with evolutionary operators (e.g. Genetic Algorithms and Differential Evolution); such strategies usually maintain a high degree of diversity into the population, enhancing global search capability, while reducing the risk of stagnation. Meanwhile the most widespread applications are from the areas of energy optimization, structural engineering and machine learning problems, demonstrating the versatility of these hybrid approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelshafy, A.M., Hassan, H., Jurasz, J.: Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO-GWO approach. Energy Convers. Manage. 173, 331–347 (2018)

    Article  Google Scholar 

  2. Abhishek, B., Ranjit, S., Shankar, T., Eappen, G., Sivasankar, P., Rajesh, A.: Hybrid PSO-HSA and PSO-GA algorithm for 3D path planning in autonomous UAVs. SN Appl. Sci. 2(11), 1–16 (2020). https://doi.org/10.1007/s42452-020-03498-0

    Article  Google Scholar 

  3. Abu-Samaha, A.M., Yousef, M.: Hybrid PSO-naive bayes algorithm based COVID-19 prediction model. In: 2024 2nd International Conference on Cyber Resilience (ICCR), pp. 01–04. IEEE (2024)

    Google Scholar 

  4. Ahsan, F., Anwer, F.: A novel approach for code coverage testing using hybrid metaheuristic algorithm. Int. J. Inf. Technol. 1–11 (2024)

    Google Scholar 

  5. Al-kubragyi, S., Ali, I.I., Alwazni, H.: Solving the multi-objective economic-emission load dispatch optimization problem using hybrid GWO-PSO algorithm. Int. J. Intell. Eng. Syst. 17(4), 738 (2024)

    Google Scholar 

  6. Al Thobiani, F., Khatir, S., Benaissa, B., Ghandourah, E., Mirjalili, S., Wahab, M.A.: A hybrid PSO and grey wolf optimization algorithm for static and dynamic crack identification. Theoret. Appl. Fract. Mech. 118, 103213 (2022)

    Article  Google Scholar 

  7. Ali, A.F., Tawhid, M.A.: A hybrid PSO and DE algorithm for solving engineering optimization problems. Appl. Math. Inf. Sci 10(2), 431–449 (2016)

    Article  Google Scholar 

  8. Arun Kumar, T., Suryanarayana Reddy, V., Dhana Selvi, P., Krishnakanth, B., Sudeep, G.: PSO and GSS algorithms are used to arrange DG optimally for voltage profile enhancement and loss reduction. E3S Web of Conf. 547, 01013 (2024). https://doi.org/10.1051/e3sconf/202454701013

  9. Awad, M., Khanna, R.: Support Vector Machines for Classification, pp. 39–66. Apress, Berkeley, CA (2015)

    Google Scholar 

  10. Bansal, S., Aggarwal, H.: A multiobjective optimization of task workflow scheduling using hybridization of PSO and WOA algorithms in cloud-fog computing. In: Cluster Computing, pp. 1–32 (2024)

    Google Scholar 

  11. Barroso, E.S., Parente, E., Cartaxo de Melo, A.M.: A hybrid PSO-GA algorithm for optimization of laminated composites. Structural and Multidisciplinary Optimization 55, 2111–2130 (2017)

    Google Scholar 

  12. Bouaddi, A., Rabeh, R., Ferfra, M.: Optimal control of automatic voltage regulator system using hybrid PSO-GWO algorithm-based PID controller. Bull. Electr. Eng. Inf. 13(5), 3070–3080 (2024)

    Article  Google Scholar 

  13. Cai, X., Zhang, N., Venayagamoorthy, G.K., Wunsch, D.C., II.: Time series prediction with recurrent neural networks trained by a hybrid PSO-EA algorithm. Neurocomputing 70(13–15), 2342–2353 (2007)

    Article  Google Scholar 

  14. Chandra, I., Singh, A., Singh, N.K., Samuel, P., Gupta, O.H., Singh, A.K.: Hybrid PSO-based optimal location of electric vehicle charging station in distribution networks. In: 2024 IEEE Students Conference on Engineering and Systems (SCES), pp. 1–6. IEEE (2024)

    Google Scholar 

  15. Chegini, S.N., Bagheri, A., Najafi, F.: PSOSCALF: a new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems. Appl. Soft Comput. 73, 697–726 (2018)

    Article  Google Scholar 

  16. Chen, J.F., Do, Q.H., Hsieh, H.N.: Training artificial neural networks by a hybrid PSO-CS algorithm. Algorithms 8(2), 292–308 (2015)

    Article  MathSciNet  Google Scholar 

  17. Chen, S., Zhou, S., Li, Y., Jiang, M., Guan, B., Xi, J.: Optimization method for digital scheduling of oilfield sewage system. Water 16(18), 2623 (2024)

    Article  Google Scholar 

  18. Cheng, W., Zeng, J.: Blockchain and hybrid PSO integration with fuzzy PID control to optimize the energy usage for lighting control system. IEEE Trans. Consum. Electron. (2024)

    Google Scholar 

  19. Chuang, L.Y., Tsai, S.W., Yang, C.H.: Catfish particle swarm optimization. In: 2008 IEEE Swarm Intelligence Symposium, pp. 1–5. IEEE (2008)

    Google Scholar 

  20. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1023/A:1022627411411

    Article  Google Scholar 

  21. Di Cesare, N., Chamoret, D., Domaszewski, M.: A new hybrid PSO algorithm based on a stochastic Markov chain model. Adv. Eng. Softw. 90, 127–137 (2015)

    Article  Google Scholar 

  22. Duan, Y., Chen, N., Chang, L., Ni, Y., Kumar, S., Zhang, P.: CAPSO: chaos adaptive particle swarm optimization algorithm. IEEE Access 10, 29393–29405 (2022). https://doi.org/10.1109/ACCESS.2022.3158666

    Article  Google Scholar 

  23. Eappen, G., Shankar, T.: Hybrid PSO-GSA for energy efficient spectrum sensing in cognitive radio network. Phys. Commun. 40, 101091 (2020)

    Article  Google Scholar 

  24. Gabriel, J.: Artificial Intelligence: Artificial Intelligence for Humans, 1st edn. CreateSpace Independent Publishing Platform, USA (2016)

    Google Scholar 

  25. García Nieto, P., García-Gonzalo, E., Fernández, J.A., Muñiz, C.D.: A hybrid PSO optimized SVM-based model for predicting a successful growth cycle of the Spirulina platensis from raceway experiments data. J. Comput. Appl. Math. 291, 293–303 (2016)

    Article  MathSciNet  Google Scholar 

  26. García Nieto, P., García-Gonzalo, E., Lasheras, F.S., de Cos Juez, F.J.: Hybrid PSO-SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability. Reliab. Eng. Syst. Saf. 138, 219–231 (2015)

    Article  Google Scholar 

  27. Garg, H.: A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 274, 292–305 (2016)

    MathSciNet  Google Scholar 

  28. Ghasemi, M., Aghaei, J., Akbari, E., Ghavidel, S., Li, L.: A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems. Energy 107, 182–195 (2016)

    Article  Google Scholar 

  29. Goldberg, D.E.: Genetic Algorithms in Search. Addison-Wesley, Optimization and Machine Learning (1989)

    Google Scholar 

  30. Graham, K.C., Thomson, S.L., Brownlee, A.E.I.: Unexplained fluctuations in particle swarm optimisation performance with increasing problem dimensionality. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 67–68 (2023)

    Google Scholar 

  31. Gunawan, S., Widodo, A.M., Firmansyah, G., Tjahjono, B.: Comparison of Dijkstra, Hybrid-PSO algorithms for optimizing the distribution route of papaya seeds and honey products (case study: PT. Agro Apiari Mandiri). Asian J. Soc. Hum. 2(12), 3136–3153 (2024)

    Google Scholar 

  32. Hachino, T., Shimoda, K., Takata, H.: Hybrid algorithm for hammerstein system identification using genetic algorithm and particle swarm optimization. World Acad. Sci., Eng. Technol. 53 (2009)

    Google Scholar 

  33. Hamadou, A.N.S., wa Maina, C., Soidridine, M.M.: A hybrid PSO-GWO-based phase shift design for a hybrid-RIS-aided heterogeneous network system. Heliyon (2024)

    Google Scholar 

  34. Hasanipanah, M., Shahnazar, A., Bakhshandeh Amnieh, H., Jahed Armaghani, D.: Prediction of air-overpressure caused by mine blasting using a new hybrid PSO-SVR model. Eng. Comput. 33, 23–31 (2017)

    Article  Google Scholar 

  35. Higashi, N., Iba, H.: Particle swarm optimization with Gaussian mutation. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706), pp. 72–79. IEEE (2003)

    Google Scholar 

  36. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, Michigan (1975)

    Google Scholar 

  37. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  38. Hu, W., Yan, L., Liu, K., Wang, H.: A short-term traffic flow forecasting method based on the hybrid PSO-SVR. Neural Process. Lett. 43, 155–172 (2016)

    Article  Google Scholar 

  39. Idoumghar, L., Melkemi, M., Schott, R., Aouad, M.I.: Hybrid PSO-SA type algorithms for multimodal function optimization and reducing energy consumption in embedded systems. Appl. Comput. Intell. Soft Comput. 2011(1), 138078 (2011)

    Google Scholar 

  40. Idris, M., Sufyanu, Z., Abubakar, S.M., Dauda, A.S.: A hybrid PSO model for predicting mortality risk among COVID-19 patients using SVM classifier. Int. J. Sci. Res. Eng. Dev. 6(1), 1005 (2023)

    Google Scholar 

  41. Jahed Armaghani, D., Shoib, R.S.N.S.B.R., Faizi, K., Rashid, A.S.A.: Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Comput. Appl. 28, 391–405 (2015)

    Google Scholar 

  42. Jemmali, A., Kaziz, S., Echouchene, F., Gazzah, M.H.: Optimization of lab-on-a CD by experimental design and machine learning models for microfluidic biosensor application. IEEE Sens. J. (2024)

    Google Scholar 

  43. Kamboj, V.K.: A novel hybrid PSO-GWO approach for unit commitment problem. Neural Comput. Appl. 27, 1643–1655 (2016)

    Article  Google Scholar 

  44. Karami, A., Guerrero-Zapata, M.: A fuzzy anomaly detection system based on hybrid PSO-K-means algorithm in content-centric networks. Neurocomputing 149, 1253–1269 (2015)

    Article  Google Scholar 

  45. Kelleher, J.D., Namee, B.M., D’Arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. The MIT Press (2015)

    Google Scholar 

  46. Kennedy, J.: Particle swarm optimization. Encyclopedia of Machine Learning, pp. 760–766 (2010). springer

    Google Scholar 

  47. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  48. Khamsawang, S., Wannakarn, P., Jiriwibhakorn, S.: Hybrid PSO-de for solving the economic dispatch problem with generator constraints. In: 2010 the 2nd international Conference on Computer and Automation Engineering (ICCAE). vol. 5, pp. 135–139. IEEE (2010)

    Google Scholar 

  49. Krohling, R.A.: Gaussian swarm: a novel particle swarm optimization algorithm. In: IEEE Conference on Cybernetics and Intelligent Systems, 2004. vol. 1, pp. 372–376. IEEE (2004)

    Google Scholar 

  50. Li, C., Zhai, R., Liu, H., Yang, Y., Wu, H.: Optimization of a heliostat field layout using hybrid PSO-GA algorithm. Appl. Therm. Eng. 128, 33–41 (2018)

    Article  Google Scholar 

  51. Liu, B., Wang, L., Jin, Y.H.: An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers. Comput. Oper. Res. 35(9), 2791–2806 (2008)

    Article  Google Scholar 

  52. Liu, H., Cai, Z., Wang, Y.: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 10(2), 629–640 (2010)

    Article  Google Scholar 

  53. Liu, H., Cai, Z., Wang, Y.: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 10(2), 629–640 (2010)

    Article  Google Scholar 

  54. Liu, P., Xie, M., Bian, J., Li, H., Song, L.: A hybrid PSO-SVM model based on safety risk prediction for the design process in metro station construction. Int. J. Environ. Res. Public Health 17(5), 1714 (2020)

    Article  Google Scholar 

  55. Liu, Y., et al.: Self-tuning control of manipulator positioning based on fuzzy PID and PSO algorithm. Front. Bioeng. Biotechnol. 9, 817723 (2022)

    Article  Google Scholar 

  56. Lu, H., Sriyanyong, P., Song, Y.H., Dillon, T.: Experimental study of a new hybrid PSO with mutation for economic dispatch with non-smooth cost function. Int. J. Electr. Power Energy Syst. 32(9), 921–935 (2010)

    Article  Google Scholar 

  57. Mallick, R.K., Nahak, N.: Hybrid differential evolution particle swarm optimization (DE-PSO) algorithm for optimization of unified power flow controller parameters. In: 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON), pp. 635–640. IEEE (2016)

    Google Scholar 

  58. Masrom, S., Moser, I., Montgomery, J., Abidin, S.Z.Z., Omar, N.: Hybridization of particle swarm optimization with adaptive genetic algorithm operators. In: 2013 13th International Conference on Intellient Systems Design and Applications, pp. 153–158. IEEE (2013)

    Google Scholar 

  59. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007, https://www.sciencedirect.com/science/article/pii/S0965997813001853

  60. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  61. Mitchell, T.M.: Machine Learning. McGraw-Hill, Inc., 1st edn. (1997)

    Google Scholar 

  62. Mohamad, E.T., Jahed Armaghani, D., Momeni, E., Alavi Nezhad Khalil Abad, S.V.: Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bull. Eng. Geol. Environ. 74, 745–757 (2015)

    Google Scholar 

  63. Mohammadpour, M., Mostafavi, S., Mirjalili, S.: Solving dynamic optimization problems using parent–child multi-swarm clustered memory (PCSCM) algorithm. Neural Comput. Appl. 1–35 (2024)

    Google Scholar 

  64. Muntoni, G., et al.: A coaxial line fixture based on a hybrid PSO-NLR model for in situ dielectric permittivity determination of Carasau bread dough. IEEE Trans. AgriFood Electron. (2024)

    Google Scholar 

  65. Nahir, A.N.: Investigate the application of particle swarm optimization to fine-tune the architecture and parameters of deep convolutional neural networks for enhanced accuracy in brain tumor detection from medical images. J. Electr. Syst. 20(4s), 2408–2419 (2024)

    Article  Google Scholar 

  66. Nobile, M.S.: Fuzzy self-tuning PSO: Single-objective global optimization without moving a finger. In: Workshop on Evolutionary and Population-based Optimization (WEPO 2020), 19th International Conference of the Italian Association for Artificial Intelligence (AIxIA) (2020)

    Google Scholar 

  67. Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: Estimating reaction constants in stochastic biological systems with a multi-swarm PSO running on GPUs. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1421–1422 (2012)

    Google Scholar 

  68. Nobile, M.S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., Pasi, G.: Fuzzy self-tuning PSO: a settings-free algorithm for global optimization. Swarm Evol. Comput. 39, 70–85 (2018)

    Article  Google Scholar 

  69. Nobile, M.S., Pasi, G., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G.: Proactive particles in swarm optimization: a self-tuning algorithm based on fuzzy logic. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2015)

    Google Scholar 

  70. Nwankwor, E., Nagar, A.K., Reid, D.: Hybrid differential evolution and particle swarm optimization for optimal well placement. Comput. Geosci. 17, 249–268 (2013)

    Article  Google Scholar 

  71. Oladipo, S., Sun, Y., Amole, A.O.: Investigating the influence of clustering techniques and parameters on a hybrid PSO-driven ANFIS model for electricity prediction. Discov. Appl. Sci. 6(5), 1–17 (2024)

    Article  Google Scholar 

  72. Oladipo, S., Sun, Y., Wang, Z.: Efficiency assessment of ANN, ANFIS, and PSO-ANFIS for predicting university residence energy usage. In: 2024 18th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), pp. 1–6. IEEE (2024)

    Google Scholar 

  73. Olatunji, K., Oladipo, S., Madyira, D., Sun, Y.: Performance evaluation of different clustering techniques and parameters of hybrid PSO-and GA-ANFIS on optimization and prediction of biomethane yield of alkali-pretreated groundnut shells. Waste Biomass Valorization 1–18 (2024)

    Google Scholar 

  74. Olivas, F., Amador-Angulo, L., Perez, J., Caraveo, C., Valdez, F., Castillo, O.: Comparative study of type-2 fuzzy particle swarm, bee colony and bat algorithms in optimization of fuzzy controllers. Algorithms 10(3), 101 (2017)

    Article  MathSciNet  Google Scholar 

  75. Palafox, L., Noman, N., Iba, H.: Reverse engineering of gene regulatory networks using dissipative particle swarm optimization. IEEE Trans. Evol. Comput. 17(4), 577–587 (2012)

    Article  Google Scholar 

  76. Prakash, S., Boopathy, K.: High speed BLDC motor for grid tied PV based EV system using hybrid PSO-spotted hyena optimized PI controller. Int. J. Appl. Power Eng. (IJAPE) 13(3) (2024)

    Google Scholar 

  77. Prasad, N.K., Singh, N., Yadav, D.M.R.: Dual loop voltage droop regulated controller for DC microgrid using hybrid PSO and GGO algorithms. Eng. Res. Express (2024)

    Google Scholar 

  78. Premalatha, K., Natarajan, A.: Hybrid PSO and GA for global maximization. Int. J. Open Problems Compt. Math 2(4), 597–608 (2009)

    MathSciNet  Google Scholar 

  79. Prithi, S., Sumathi, S.: Automata based hybrid PSO-GWO algorithm for secured energy efficient optimal routing in wireless sensor network. Wireless Pers. Commun. 117, 545–559 (2021)

    Article  Google Scholar 

  80. Rahmatulloh, A., Nugraha, G.F., Darmawan, I.: Hybrid PSO-adam optimizer approach for optimizing loss function reduction in the dist-YOLOv3 algorithm. Int. J. Intell. Eng. Syst. 17(5), 199–209 (2024)

    Google Scholar 

  81. Raju, M., Gupta, M.K., Bhanot, N., Sharma, V.S.: A hybrid PSO-BFO evolutionary algorithm for optimization of fused deposition modelling process parameters. J. Intell. Manuf. 30, 2743–2758 (2019)

    Article  Google Scholar 

  82. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987). https://doi.org/10.1145/37402.37406

    Article  Google Scholar 

  83. Riaz, F.M., Ahmad, S., Khan, J.A., Altaf, S., Rehman, Z.U., Memon, S.K.: Numerical treatment of non-linear system for latently infected CD4+T cells: a swarm- optimized neural network approach. IEEE Access 12, 103119–103132 (2024)

    Article  Google Scholar 

  84. Sahu, R.K., Panda, S., Sekhar, G.C.: A novel hybrid PSO-PS optimized fuzzy PI controller for AGC in multi area interconnected power systems. Int. J. Electr. Power Energy Syst. 64, 880–893 (2015)

    Article  Google Scholar 

  85. Sang, Y., Wei, J., Zhang, Z., Wang, B.: A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing. Cluster Comput. 1–16 (2024)

    Google Scholar 

  86. Sayah, S., Hamouda, A.: A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic dispatch problems. Appl. Soft Comput. 13(4), 1608–1619 (2013)

    Article  Google Scholar 

  87. Selakov, A., Cvijetinović, D., Milović, L., Mellon, S., Bekut, D.: Hybrid PSO-SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank. Appl. Soft Comput. 16, 80–88 (2014)

    Article  Google Scholar 

  88. Şenel, F.A., Gökçe, F., Yüksel, A.S., Yiğit, T.: A novel hybrid PSO-GWO algorithm for optimization problems. Eng. Comput. 35, 1359–1373 (2019)

    Article  Google Scholar 

  89. Sheela, M.S., Arun, C.A.: Hybrid PSO-SVM algorithm for COVID-19 screening and quantification. Int. J. Inf. Technol. 14(4), 2049–2056 (2022)

    Google Scholar 

  90. Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546). vol. 1, pp. 101–106. IEEE (2001)

    Google Scholar 

  91. Shuvo, S.P., Sultana, N., Dip, M.M.F., Shibazee, S.P., Sarker, S.: Optimizing pH prediction in water treatment plant through a hybrid PSO-SVM approach with empirical mode decomposition. In: 7th International Conference on Civil Engineering for Sustainable Development (ICCESD 2024), pp. 18–31. Atlantis Press (2024)

    Google Scholar 

  92. Simaiya, S., et al.: A hybrid cloud load balancing and host utilization prediction method using deep learning and optimization techniques. Sci. Rep. 14(1), 1337 (2024)

    Article  Google Scholar 

  93. Sohouli, A.N., Molhem, H., Zare-Dehnavi, N.: Assessing the stability of the hybrid PSO-GA Algorithm in magnetic model parameter estimation compared to two separate approaches. Adv. Appl. Geol. (2024)

    Google Scholar 

  94. Sun, J., Fang, W., Palade, V., Wu, X., Xu, W.: Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point. Appl. Math. Comput. 218(7), 3763–3775 (2011)

    Google Scholar 

  95. Tan, J.: Agricultural industry supply chain optimization method based on improved hybrid PSO algorithm under the concept of circular economy. J. Biotech Res. 18, 120–131 (2024)

    Google Scholar 

  96. Tangherloni, A., Rundo, L., Nobile, M.S.: Proactive particles in swarm optimization: a settings-free algorithm for real-parameter single objective optimization problems. In: 2017 IEEE congress on evolutionary computation (CEC), pp. 1940–1947. IEEE (2017)

    Google Scholar 

  97. Tariq, A., Javaid, W., Shahzad, W., Yasir, M., Iqbal, S.: A hybrid PSO based algorithm for solving the machine-part cell formation problem. J. Sci. Ind. Res. 83(7) (2024)

    Google Scholar 

  98. Unnisa, M., Ganesan, V.: An improved XGBoost classifier for micro expression recognition using hybrid optimization algorithm. In: 2024 International Conference on Communication, Computing and Internet of Things (IC3IoT), pp. 1–6. IEEE (2024)

    Google Scholar 

  99. Vanneschi, L., Castelli, M.: Multilayer perceptrons. In: Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C. (eds.) Encyclopedia of Bioinformatics and Computational Biology, pp. 612–620. Academic Press, Oxford (2019)

    Chapter  Google Scholar 

  100. Vapnik, V.N.: The support vector method. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.D. (eds.) Artificial Neural Networks – ICANN’97, pp. 261–271. Springer, Berlin Heidelberg, Berlin, Heidelberg (1997)

    Google Scholar 

  101. Wang, L., Tian, D., Gou, X., Shi, Z.: Hybrid particle swarm optimization with adaptive learning strategy. Soft Comput. 1–26 (2024)

    Google Scholar 

  102. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  103. Wu, Z., et al.: Estimating soil moisture content in citrus orchards using multi-temporal sentinel-1A data-based LSTM and PSO-LSTM models. J. Hydrol. 637, 131336 (2024)

    Article  Google Scholar 

  104. Xin, B., Chen, J., Zhang, J., Fang, H., Peng, Z.H.: Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 42(5), 744–767 (2011)

    Google Scholar 

  105. Xu, P., Luo, W., Lin, X., Qiao, Y., Zhu, T.: Hybrid of PSO and CMA-ES for global optimization. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 27–33. IEEE (2019)

    Google Scholar 

  106. Yasin, A., Dhaouadi, R., Mukhopadhyay, S.: A novel supercapacitor model parameters identification method using metaheuristic gradient-based optimization algorithms. Energies 17(6), 1500 (2024)

    Article  Google Scholar 

  107. Yogesh, C.K., et al.: A new hybrid PSO assisted biogeography-based optimization for emotion and stress recognition from speech signal. Expert Syst. Appl. 69, 149–158 (2017)

    Article  Google Scholar 

  108. Younis, W., Yameen, M.Z., Tayab, A., Qamar, H., Ghith, E., Tlija, M.: Enhancing load frequency control of interconnected power system using hybrid PSO-AHA optimizer. Energies 17(16), 3962 (2024)

    Article  Google Scholar 

  109. Yu, X., Cao, J., Shan, H., Zhu, L., Guo, J.: An adaptive hybrid algorithm based on particle swarm optimization and differential evolution for global optimization. Sci. World J. 2014(1), 215472 (2014)

    Google Scholar 

  110. Zeng, J., et al.: Proposing several hybrid PSO-extreme learning machine techniques to predict TBM performance. Eng. Comput. 1–17 (2022)

    Google Scholar 

  111. Zhang, C., Ning, J., Lu, S., Ouyang, D., Ding, T.: A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization. Oper. Res. Lett. 37(2), 117–122 (2009)

    Article  MathSciNet  Google Scholar 

  112. Zhang, X., Yang, Y.: Optimization of PID controller parameters using a hybrid PSO algorithm. Int. J. Dyn. Control 12, 3617–3627 (2024)

    Article  Google Scholar 

  113. Zhao, Y., Zhang, Y., Xiao, J., Zhang, T., Zhang, Z., Wang, B.: Research on intelligent decision method for close air combat maneuver based on hybrid particle swarm optimization algorithm. In: 2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE), pp. 507–514. IEEE (2024)

    Google Scholar 

  114. Zoremsanga, C., Hussain, J.: Hybrid particle swarm optimized models for rainfall prediction: a case study in India. Pure Appl. Geophys. 181, 2343–2357 (2024)

    Article  Google Scholar 

  115. Zuo, X., Xiao, L.: A DE and PSO based hybrid algorithm for dynamic optimization problems. Soft. Comput. 18, 1405–1424 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS (https://doi.org/10.54499/UIDB/04152/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Grazioso .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grazioso, M., Gallese, C., Vanneschi, L., Nobile, M.S. (2025). A Survey of Modern Hybrid Particle Swarm Optimization Algorithms. In: García-Sánchez, P., Hart, E., Thomson, S.L. (eds) Applications of Evolutionary Computation. EvoApplications 2025. Lecture Notes in Computer Science, vol 15613. Springer, Cham. https://doi.org/10.1007/978-3-031-90065-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-90065-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-90064-8

  • Online ISBN: 978-3-031-90065-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics