Abstract
Bio-inspired, population-based meta-heuristic for global optimization are very popular algorithms for addressing complex computational problems that traditional methods struggle to solve. Among the existing algorithms, the swarm intelligence algorithm Particle Swarm Optimization (PSO) is one of the most popular, thanks to its simplicity and effectiveness in multiple scenarios. This article focuses on recent hybrid optimization methods that extend the basic functioning of PSO. Hybridization, in this context, is defined as the integration of PSO with a different technique, to take advantage of the strengths of both algorithms. According to our findings, many variants have been proposed. The most frequent solutions consist of the hybridization of PSO with evolutionary operators (e.g. Genetic Algorithms and Differential Evolution); such strategies usually maintain a high degree of diversity into the population, enhancing global search capability, while reducing the risk of stagnation. Meanwhile the most widespread applications are from the areas of energy optimization, structural engineering and machine learning problems, demonstrating the versatility of these hybrid approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abdelshafy, A.M., Hassan, H., Jurasz, J.: Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO-GWO approach. Energy Convers. Manage. 173, 331–347 (2018)
Abhishek, B., Ranjit, S., Shankar, T., Eappen, G., Sivasankar, P., Rajesh, A.: Hybrid PSO-HSA and PSO-GA algorithm for 3D path planning in autonomous UAVs. SN Appl. Sci. 2(11), 1–16 (2020). https://doi.org/10.1007/s42452-020-03498-0
Abu-Samaha, A.M., Yousef, M.: Hybrid PSO-naive bayes algorithm based COVID-19 prediction model. In: 2024 2nd International Conference on Cyber Resilience (ICCR), pp. 01–04. IEEE (2024)
Ahsan, F., Anwer, F.: A novel approach for code coverage testing using hybrid metaheuristic algorithm. Int. J. Inf. Technol. 1–11 (2024)
Al-kubragyi, S., Ali, I.I., Alwazni, H.: Solving the multi-objective economic-emission load dispatch optimization problem using hybrid GWO-PSO algorithm. Int. J. Intell. Eng. Syst. 17(4), 738 (2024)
Al Thobiani, F., Khatir, S., Benaissa, B., Ghandourah, E., Mirjalili, S., Wahab, M.A.: A hybrid PSO and grey wolf optimization algorithm for static and dynamic crack identification. Theoret. Appl. Fract. Mech. 118, 103213 (2022)
Ali, A.F., Tawhid, M.A.: A hybrid PSO and DE algorithm for solving engineering optimization problems. Appl. Math. Inf. Sci 10(2), 431–449 (2016)
Arun Kumar, T., Suryanarayana Reddy, V., Dhana Selvi, P., Krishnakanth, B., Sudeep, G.: PSO and GSS algorithms are used to arrange DG optimally for voltage profile enhancement and loss reduction. E3S Web of Conf. 547, 01013 (2024). https://doi.org/10.1051/e3sconf/202454701013
Awad, M., Khanna, R.: Support Vector Machines for Classification, pp. 39–66. Apress, Berkeley, CA (2015)
Bansal, S., Aggarwal, H.: A multiobjective optimization of task workflow scheduling using hybridization of PSO and WOA algorithms in cloud-fog computing. In: Cluster Computing, pp. 1–32 (2024)
Barroso, E.S., Parente, E., Cartaxo de Melo, A.M.: A hybrid PSO-GA algorithm for optimization of laminated composites. Structural and Multidisciplinary Optimization 55, 2111–2130 (2017)
Bouaddi, A., Rabeh, R., Ferfra, M.: Optimal control of automatic voltage regulator system using hybrid PSO-GWO algorithm-based PID controller. Bull. Electr. Eng. Inf. 13(5), 3070–3080 (2024)
Cai, X., Zhang, N., Venayagamoorthy, G.K., Wunsch, D.C., II.: Time series prediction with recurrent neural networks trained by a hybrid PSO-EA algorithm. Neurocomputing 70(13–15), 2342–2353 (2007)
Chandra, I., Singh, A., Singh, N.K., Samuel, P., Gupta, O.H., Singh, A.K.: Hybrid PSO-based optimal location of electric vehicle charging station in distribution networks. In: 2024 IEEE Students Conference on Engineering and Systems (SCES), pp. 1–6. IEEE (2024)
Chegini, S.N., Bagheri, A., Najafi, F.: PSOSCALF: a new hybrid PSO based on sine cosine algorithm and levy flight for solving optimization problems. Appl. Soft Comput. 73, 697–726 (2018)
Chen, J.F., Do, Q.H., Hsieh, H.N.: Training artificial neural networks by a hybrid PSO-CS algorithm. Algorithms 8(2), 292–308 (2015)
Chen, S., Zhou, S., Li, Y., Jiang, M., Guan, B., Xi, J.: Optimization method for digital scheduling of oilfield sewage system. Water 16(18), 2623 (2024)
Cheng, W., Zeng, J.: Blockchain and hybrid PSO integration with fuzzy PID control to optimize the energy usage for lighting control system. IEEE Trans. Consum. Electron. (2024)
Chuang, L.Y., Tsai, S.W., Yang, C.H.: Catfish particle swarm optimization. In: 2008 IEEE Swarm Intelligence Symposium, pp. 1–5. IEEE (2008)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1023/A:1022627411411
Di Cesare, N., Chamoret, D., Domaszewski, M.: A new hybrid PSO algorithm based on a stochastic Markov chain model. Adv. Eng. Softw. 90, 127–137 (2015)
Duan, Y., Chen, N., Chang, L., Ni, Y., Kumar, S., Zhang, P.: CAPSO: chaos adaptive particle swarm optimization algorithm. IEEE Access 10, 29393–29405 (2022). https://doi.org/10.1109/ACCESS.2022.3158666
Eappen, G., Shankar, T.: Hybrid PSO-GSA for energy efficient spectrum sensing in cognitive radio network. Phys. Commun. 40, 101091 (2020)
Gabriel, J.: Artificial Intelligence: Artificial Intelligence for Humans, 1st edn. CreateSpace Independent Publishing Platform, USA (2016)
García Nieto, P., García-Gonzalo, E., Fernández, J.A., Muñiz, C.D.: A hybrid PSO optimized SVM-based model for predicting a successful growth cycle of the Spirulina platensis from raceway experiments data. J. Comput. Appl. Math. 291, 293–303 (2016)
García Nieto, P., García-Gonzalo, E., Lasheras, F.S., de Cos Juez, F.J.: Hybrid PSO-SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability. Reliab. Eng. Syst. Saf. 138, 219–231 (2015)
Garg, H.: A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 274, 292–305 (2016)
Ghasemi, M., Aghaei, J., Akbari, E., Ghavidel, S., Li, L.: A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems. Energy 107, 182–195 (2016)
Goldberg, D.E.: Genetic Algorithms in Search. Addison-Wesley, Optimization and Machine Learning (1989)
Graham, K.C., Thomson, S.L., Brownlee, A.E.I.: Unexplained fluctuations in particle swarm optimisation performance with increasing problem dimensionality. In: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, pp. 67–68 (2023)
Gunawan, S., Widodo, A.M., Firmansyah, G., Tjahjono, B.: Comparison of Dijkstra, Hybrid-PSO algorithms for optimizing the distribution route of papaya seeds and honey products (case study: PT. Agro Apiari Mandiri). Asian J. Soc. Hum. 2(12), 3136–3153 (2024)
Hachino, T., Shimoda, K., Takata, H.: Hybrid algorithm for hammerstein system identification using genetic algorithm and particle swarm optimization. World Acad. Sci., Eng. Technol. 53 (2009)
Hamadou, A.N.S., wa Maina, C., Soidridine, M.M.: A hybrid PSO-GWO-based phase shift design for a hybrid-RIS-aided heterogeneous network system. Heliyon (2024)
Hasanipanah, M., Shahnazar, A., Bakhshandeh Amnieh, H., Jahed Armaghani, D.: Prediction of air-overpressure caused by mine blasting using a new hybrid PSO-SVR model. Eng. Comput. 33, 23–31 (2017)
Higashi, N., Iba, H.: Particle swarm optimization with Gaussian mutation. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706), pp. 72–79. IEEE (2003)
Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, Michigan (1975)
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989). https://doi.org/10.1016/0893-6080(89)90020-8
Hu, W., Yan, L., Liu, K., Wang, H.: A short-term traffic flow forecasting method based on the hybrid PSO-SVR. Neural Process. Lett. 43, 155–172 (2016)
Idoumghar, L., Melkemi, M., Schott, R., Aouad, M.I.: Hybrid PSO-SA type algorithms for multimodal function optimization and reducing energy consumption in embedded systems. Appl. Comput. Intell. Soft Comput. 2011(1), 138078 (2011)
Idris, M., Sufyanu, Z., Abubakar, S.M., Dauda, A.S.: A hybrid PSO model for predicting mortality risk among COVID-19 patients using SVM classifier. Int. J. Sci. Res. Eng. Dev. 6(1), 1005 (2023)
Jahed Armaghani, D., Shoib, R.S.N.S.B.R., Faizi, K., Rashid, A.S.A.: Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Comput. Appl. 28, 391–405 (2015)
Jemmali, A., Kaziz, S., Echouchene, F., Gazzah, M.H.: Optimization of lab-on-a CD by experimental design and machine learning models for microfluidic biosensor application. IEEE Sens. J. (2024)
Kamboj, V.K.: A novel hybrid PSO-GWO approach for unit commitment problem. Neural Comput. Appl. 27, 1643–1655 (2016)
Karami, A., Guerrero-Zapata, M.: A fuzzy anomaly detection system based on hybrid PSO-K-means algorithm in content-centric networks. Neurocomputing 149, 1253–1269 (2015)
Kelleher, J.D., Namee, B.M., D’Arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. The MIT Press (2015)
Kennedy, J.: Particle swarm optimization. Encyclopedia of Machine Learning, pp. 760–766 (2010). springer
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)
Khamsawang, S., Wannakarn, P., Jiriwibhakorn, S.: Hybrid PSO-de for solving the economic dispatch problem with generator constraints. In: 2010 the 2nd international Conference on Computer and Automation Engineering (ICCAE). vol. 5, pp. 135–139. IEEE (2010)
Krohling, R.A.: Gaussian swarm: a novel particle swarm optimization algorithm. In: IEEE Conference on Cybernetics and Intelligent Systems, 2004. vol. 1, pp. 372–376. IEEE (2004)
Li, C., Zhai, R., Liu, H., Yang, Y., Wu, H.: Optimization of a heliostat field layout using hybrid PSO-GA algorithm. Appl. Therm. Eng. 128, 33–41 (2018)
Liu, B., Wang, L., Jin, Y.H.: An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers. Comput. Oper. Res. 35(9), 2791–2806 (2008)
Liu, H., Cai, Z., Wang, Y.: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 10(2), 629–640 (2010)
Liu, H., Cai, Z., Wang, Y.: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft Comput. 10(2), 629–640 (2010)
Liu, P., Xie, M., Bian, J., Li, H., Song, L.: A hybrid PSO-SVM model based on safety risk prediction for the design process in metro station construction. Int. J. Environ. Res. Public Health 17(5), 1714 (2020)
Liu, Y., et al.: Self-tuning control of manipulator positioning based on fuzzy PID and PSO algorithm. Front. Bioeng. Biotechnol. 9, 817723 (2022)
Lu, H., Sriyanyong, P., Song, Y.H., Dillon, T.: Experimental study of a new hybrid PSO with mutation for economic dispatch with non-smooth cost function. Int. J. Electr. Power Energy Syst. 32(9), 921–935 (2010)
Mallick, R.K., Nahak, N.: Hybrid differential evolution particle swarm optimization (DE-PSO) algorithm for optimization of unified power flow controller parameters. In: 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON), pp. 635–640. IEEE (2016)
Masrom, S., Moser, I., Montgomery, J., Abidin, S.Z.Z., Omar, N.: Hybridization of particle swarm optimization with adaptive genetic algorithm operators. In: 2013 13th International Conference on Intellient Systems Design and Applications, pp. 153–158. IEEE (2013)
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007, https://www.sciencedirect.com/science/article/pii/S0965997813001853
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
Mitchell, T.M.: Machine Learning. McGraw-Hill, Inc., 1st edn. (1997)
Mohamad, E.T., Jahed Armaghani, D., Momeni, E., Alavi Nezhad Khalil Abad, S.V.: Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bull. Eng. Geol. Environ. 74, 745–757 (2015)
Mohammadpour, M., Mostafavi, S., Mirjalili, S.: Solving dynamic optimization problems using parent–child multi-swarm clustered memory (PCSCM) algorithm. Neural Comput. Appl. 1–35 (2024)
Muntoni, G., et al.: A coaxial line fixture based on a hybrid PSO-NLR model for in situ dielectric permittivity determination of Carasau bread dough. IEEE Trans. AgriFood Electron. (2024)
Nahir, A.N.: Investigate the application of particle swarm optimization to fine-tune the architecture and parameters of deep convolutional neural networks for enhanced accuracy in brain tumor detection from medical images. J. Electr. Syst. 20(4s), 2408–2419 (2024)
Nobile, M.S.: Fuzzy self-tuning PSO: Single-objective global optimization without moving a finger. In: Workshop on Evolutionary and Population-based Optimization (WEPO 2020), 19th International Conference of the Italian Association for Artificial Intelligence (AIxIA) (2020)
Nobile, M.S., Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D.: Estimating reaction constants in stochastic biological systems with a multi-swarm PSO running on GPUs. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1421–1422 (2012)
Nobile, M.S., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G., Pasi, G.: Fuzzy self-tuning PSO: a settings-free algorithm for global optimization. Swarm Evol. Comput. 39, 70–85 (2018)
Nobile, M.S., Pasi, G., Cazzaniga, P., Besozzi, D., Colombo, R., Mauri, G.: Proactive particles in swarm optimization: a self-tuning algorithm based on fuzzy logic. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2015)
Nwankwor, E., Nagar, A.K., Reid, D.: Hybrid differential evolution and particle swarm optimization for optimal well placement. Comput. Geosci. 17, 249–268 (2013)
Oladipo, S., Sun, Y., Amole, A.O.: Investigating the influence of clustering techniques and parameters on a hybrid PSO-driven ANFIS model for electricity prediction. Discov. Appl. Sci. 6(5), 1–17 (2024)
Oladipo, S., Sun, Y., Wang, Z.: Efficiency assessment of ANN, ANFIS, and PSO-ANFIS for predicting university residence energy usage. In: 2024 18th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), pp. 1–6. IEEE (2024)
Olatunji, K., Oladipo, S., Madyira, D., Sun, Y.: Performance evaluation of different clustering techniques and parameters of hybrid PSO-and GA-ANFIS on optimization and prediction of biomethane yield of alkali-pretreated groundnut shells. Waste Biomass Valorization 1–18 (2024)
Olivas, F., Amador-Angulo, L., Perez, J., Caraveo, C., Valdez, F., Castillo, O.: Comparative study of type-2 fuzzy particle swarm, bee colony and bat algorithms in optimization of fuzzy controllers. Algorithms 10(3), 101 (2017)
Palafox, L., Noman, N., Iba, H.: Reverse engineering of gene regulatory networks using dissipative particle swarm optimization. IEEE Trans. Evol. Comput. 17(4), 577–587 (2012)
Prakash, S., Boopathy, K.: High speed BLDC motor for grid tied PV based EV system using hybrid PSO-spotted hyena optimized PI controller. Int. J. Appl. Power Eng. (IJAPE) 13(3) (2024)
Prasad, N.K., Singh, N., Yadav, D.M.R.: Dual loop voltage droop regulated controller for DC microgrid using hybrid PSO and GGO algorithms. Eng. Res. Express (2024)
Premalatha, K., Natarajan, A.: Hybrid PSO and GA for global maximization. Int. J. Open Problems Compt. Math 2(4), 597–608 (2009)
Prithi, S., Sumathi, S.: Automata based hybrid PSO-GWO algorithm for secured energy efficient optimal routing in wireless sensor network. Wireless Pers. Commun. 117, 545–559 (2021)
Rahmatulloh, A., Nugraha, G.F., Darmawan, I.: Hybrid PSO-adam optimizer approach for optimizing loss function reduction in the dist-YOLOv3 algorithm. Int. J. Intell. Eng. Syst. 17(5), 199–209 (2024)
Raju, M., Gupta, M.K., Bhanot, N., Sharma, V.S.: A hybrid PSO-BFO evolutionary algorithm for optimization of fused deposition modelling process parameters. J. Intell. Manuf. 30, 2743–2758 (2019)
Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987). https://doi.org/10.1145/37402.37406
Riaz, F.M., Ahmad, S., Khan, J.A., Altaf, S., Rehman, Z.U., Memon, S.K.: Numerical treatment of non-linear system for latently infected CD4+T cells: a swarm- optimized neural network approach. IEEE Access 12, 103119–103132 (2024)
Sahu, R.K., Panda, S., Sekhar, G.C.: A novel hybrid PSO-PS optimized fuzzy PI controller for AGC in multi area interconnected power systems. Int. J. Electr. Power Energy Syst. 64, 880–893 (2015)
Sang, Y., Wei, J., Zhang, Z., Wang, B.: A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing. Cluster Comput. 1–16 (2024)
Sayah, S., Hamouda, A.: A hybrid differential evolution algorithm based on particle swarm optimization for nonconvex economic dispatch problems. Appl. Soft Comput. 13(4), 1608–1619 (2013)
Selakov, A., Cvijetinović, D., Milović, L., Mellon, S., Bekut, D.: Hybrid PSO-SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank. Appl. Soft Comput. 16, 80–88 (2014)
Şenel, F.A., Gökçe, F., Yüksel, A.S., Yiğit, T.: A novel hybrid PSO-GWO algorithm for optimization problems. Eng. Comput. 35, 1359–1373 (2019)
Sheela, M.S., Arun, C.A.: Hybrid PSO-SVM algorithm for COVID-19 screening and quantification. Int. J. Inf. Technol. 14(4), 2049–2056 (2022)
Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546). vol. 1, pp. 101–106. IEEE (2001)
Shuvo, S.P., Sultana, N., Dip, M.M.F., Shibazee, S.P., Sarker, S.: Optimizing pH prediction in water treatment plant through a hybrid PSO-SVM approach with empirical mode decomposition. In: 7th International Conference on Civil Engineering for Sustainable Development (ICCESD 2024), pp. 18–31. Atlantis Press (2024)
Simaiya, S., et al.: A hybrid cloud load balancing and host utilization prediction method using deep learning and optimization techniques. Sci. Rep. 14(1), 1337 (2024)
Sohouli, A.N., Molhem, H., Zare-Dehnavi, N.: Assessing the stability of the hybrid PSO-GA Algorithm in magnetic model parameter estimation compared to two separate approaches. Adv. Appl. Geol. (2024)
Sun, J., Fang, W., Palade, V., Wu, X., Xu, W.: Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point. Appl. Math. Comput. 218(7), 3763–3775 (2011)
Tan, J.: Agricultural industry supply chain optimization method based on improved hybrid PSO algorithm under the concept of circular economy. J. Biotech Res. 18, 120–131 (2024)
Tangherloni, A., Rundo, L., Nobile, M.S.: Proactive particles in swarm optimization: a settings-free algorithm for real-parameter single objective optimization problems. In: 2017 IEEE congress on evolutionary computation (CEC), pp. 1940–1947. IEEE (2017)
Tariq, A., Javaid, W., Shahzad, W., Yasir, M., Iqbal, S.: A hybrid PSO based algorithm for solving the machine-part cell formation problem. J. Sci. Ind. Res. 83(7) (2024)
Unnisa, M., Ganesan, V.: An improved XGBoost classifier for micro expression recognition using hybrid optimization algorithm. In: 2024 International Conference on Communication, Computing and Internet of Things (IC3IoT), pp. 1–6. IEEE (2024)
Vanneschi, L., Castelli, M.: Multilayer perceptrons. In: Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C. (eds.) Encyclopedia of Bioinformatics and Computational Biology, pp. 612–620. Academic Press, Oxford (2019)
Vapnik, V.N.: The support vector method. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.D. (eds.) Artificial Neural Networks – ICANN’97, pp. 261–271. Springer, Berlin Heidelberg, Berlin, Heidelberg (1997)
Wang, L., Tian, D., Gou, X., Shi, Z.: Hybrid particle swarm optimization with adaptive learning strategy. Soft Comput. 1–26 (2024)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)
Wu, Z., et al.: Estimating soil moisture content in citrus orchards using multi-temporal sentinel-1A data-based LSTM and PSO-LSTM models. J. Hydrol. 637, 131336 (2024)
Xin, B., Chen, J., Zhang, J., Fang, H., Peng, Z.H.: Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 42(5), 744–767 (2011)
Xu, P., Luo, W., Lin, X., Qiao, Y., Zhu, T.: Hybrid of PSO and CMA-ES for global optimization. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 27–33. IEEE (2019)
Yasin, A., Dhaouadi, R., Mukhopadhyay, S.: A novel supercapacitor model parameters identification method using metaheuristic gradient-based optimization algorithms. Energies 17(6), 1500 (2024)
Yogesh, C.K., et al.: A new hybrid PSO assisted biogeography-based optimization for emotion and stress recognition from speech signal. Expert Syst. Appl. 69, 149–158 (2017)
Younis, W., Yameen, M.Z., Tayab, A., Qamar, H., Ghith, E., Tlija, M.: Enhancing load frequency control of interconnected power system using hybrid PSO-AHA optimizer. Energies 17(16), 3962 (2024)
Yu, X., Cao, J., Shan, H., Zhu, L., Guo, J.: An adaptive hybrid algorithm based on particle swarm optimization and differential evolution for global optimization. Sci. World J. 2014(1), 215472 (2014)
Zeng, J., et al.: Proposing several hybrid PSO-extreme learning machine techniques to predict TBM performance. Eng. Comput. 1–17 (2022)
Zhang, C., Ning, J., Lu, S., Ouyang, D., Ding, T.: A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization. Oper. Res. Lett. 37(2), 117–122 (2009)
Zhang, X., Yang, Y.: Optimization of PID controller parameters using a hybrid PSO algorithm. Int. J. Dyn. Control 12, 3617–3627 (2024)
Zhao, Y., Zhang, Y., Xiao, J., Zhang, T., Zhang, Z., Wang, B.: Research on intelligent decision method for close air combat maneuver based on hybrid particle swarm optimization algorithm. In: 2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE), pp. 507–514. IEEE (2024)
Zoremsanga, C., Hussain, J.: Hybrid particle swarm optimized models for rainfall prediction: a case study in India. Pure Appl. Geophys. 181, 2343–2357 (2024)
Zuo, X., Xiao, L.: A DE and PSO based hybrid algorithm for dynamic optimization problems. Soft. Comput. 18, 1405–1424 (2014)
Acknowledgments
This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS (https://doi.org/10.54499/UIDB/04152/2020).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Grazioso, M., Gallese, C., Vanneschi, L., Nobile, M.S. (2025). A Survey of Modern Hybrid Particle Swarm Optimization Algorithms. In: García-Sánchez, P., Hart, E., Thomson, S.L. (eds) Applications of Evolutionary Computation. EvoApplications 2025. Lecture Notes in Computer Science, vol 15613. Springer, Cham. https://doi.org/10.1007/978-3-031-90065-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-90065-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-90064-8
Online ISBN: 978-3-031-90065-5
eBook Packages: Computer ScienceComputer Science (R0)