Skip to main content

Human Classification Using Gait Features

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8897))

Abstract

Gait exhibits several advantages with respect to other biometrics features: acquisition can be performed through cheap technology, at a distance and without people collaboration. In this paper we perform gait analysis using skeletal data provided by the Microsoft Kinect sensor. We defined a rich set of physical and behavioral features aiming at identifying the more relevant parameters for gait description. Using SVM we showed that a limited set of behavioral features related to the movements of head, elbows and knees is a very effective tool for gait characterization and people recognition. In particular, our experimental results shows that it is possible to achieve 96% classification accuracy when discriminating a group of 20 people.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashbourn, J.: Biometrics - advanced identity verification: the complete guide. Springer (2002)

    Google Scholar 

  2. BenAbdelkader, C., Cutler, R., Davis, L.: View-invariant Estimation of Height and Stride for Gait Recognition. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, p. 155. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Cucchiara, R., Grana, C., Prati, A., Vezzani, R.: Computer vision system for in-house video surveillance. In IEE Proceedings of Vision, Image and Signal Processing (2005)

    Google Scholar 

  4. Goffredo, M., Bouchrika, I., Carter, J.N., Nixon, M.S.: Performance analysis for automated gait extraction and recognition in multi-camera surveillance. Multimedia Tools Appl. 50(1), 75–94 (2010)

    Article  Google Scholar 

  5. Larsen, P.K.E., Simonsen, B., Lynnerup, N.: Gait analysis in forensic medicine. In Proc. Videometrics IX., vol. 6491 (January 2007)

    Google Scholar 

  6. Bouchrika, I., Goffredo, M., Carter, J., Nixon, M.: On using gait in forensic biometrics. Journal of Forensic Sciences 56(4), 882–889 (2011)

    Article  Google Scholar 

  7. Winter, D.A.: The biomechanics and motor control of human gait: normal, elderly and pathological. University of Waterloo Press (1991)

    Google Scholar 

  8. Eastlack, M.E., Arvidson, J., Snyder-Mackler, L., Danoff, J.V., McGarvey, C.L.: Interrater reliability of videotaped observational gait-analysis assessments. Phys. Ther. 71(6), 465–472 (1991)

    Google Scholar 

  9. Kressig, R.W., Beauchet, O.: Guidelines for clinical applications of spatio-temporal gait analysis in older adults. Aging Clinical and Experimental Research, 18(2):174–176 (2006)

    Google Scholar 

  10. Brown, M., Sinacore, D.R., Binder, E.F., Kohrt, W.M.: Physical and performance measures for the identification of mild to moderate frailty. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 55(6), M350–M355 (2000)

    Article  Google Scholar 

  11. Zhang, R., Vogler, C., Metaxas, D.: Human gait recognition. In: Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2004) Volume 1 - Volume 01, CVPRW 2004, IEEE Computer Society. pp. 18–25, Washington, DC (2004)

    Google Scholar 

  12. Urtasun, R., Fua, P.: 3d tracking for gait characterization and recognition. In: Proc. IEEE Automatic Face and Gesture Recognition, Seoul, Korea, pp. 17–22 (2004)

    Google Scholar 

  13. Yoo, J.-H., Nixon, M.: Automated markerless analysis of human gait motion for recognition and classification. ETRI Journal 33(3), 259–266 (2011)

    Article  Google Scholar 

  14. Wang, L., Tan, T., Ning, H.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)

    Article  Google Scholar 

  15. Preis, J., Kessel, M., Werner, M., Linnhoff-Popien, C.: Gait recognition with kinect. In: Proceedings of the First Workshop on Kinect in Pervasive Computing (2012)

    Google Scholar 

  16. Borràs, R., Lapedriza, À., Igual, L.: Depth Information in Human Gait Analysis: An Experimental Study on Gender Recognition. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part II. LNCS, vol. 7325, pp. 98–105. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Satta, R., Pala, F., Fumera, G., Roli, F.: Real-time appearance-based person re-identification over multiple kinect cameras. In: 8th International Conference on Computer Vision Theory and Applications (VISAPP 2013), Barcelona, Spain, 21/02/2013 (2013)

    Google Scholar 

  18. Ball, A., Rye, D., Ramos, F., Velonaki, M.: Unsupervised clustering of people from ‘skeleton’ data. In: Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, HRI 2012, ACM. pp. 225–226, New York (2012)

    Google Scholar 

  19. Gianaria, E., Balossino, N., Grangetto, M., Lucenteforte, M.: Gait characterization using dynamic skeleton acquisition. In: IEEE 15th International Workshop on Multimedia Signal Processing (MMSP), pp. 440–445 (September 2013)

    Google Scholar 

  20. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124 (2013)

    Article  Google Scholar 

  21. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT 1992, ACM. pp. 144–152, New York (1992)

    Google Scholar 

  22. Aizerman, M.A., Braverman, E.A., Rozonoer, L.: Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25, 821–837 (1964)

    MathSciNet  Google Scholar 

  23. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27 (2011)

    Google Scholar 

  24. Crisp, D.J., Burges, C.J.C.: A geometric interpretation of v-svm classifiers. In: Solla, S.A., Leen, T.K., Müller, K. (eds.) Advances in Neural Information Processing Systems 12, MIT Press. pp. 244–250 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Gianaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gianaria, E., Grangetto, M., Lucenteforte, M., Balossino, N. (2014). Human Classification Using Gait Features. In: Cantoni, V., Dimov, D., Tistarelli, M. (eds) Biometric Authentication. BIOMET 2014. Lecture Notes in Computer Science(), vol 8897. Springer, Cham. https://doi.org/10.1007/978-3-319-13386-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13386-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13385-0

  • Online ISBN: 978-3-319-13386-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics