Skip to main content

On Dynamic Multiple Criteria Decision Making Models: A Goal Programming Approach

  • Chapter

Part of the book series: Multiple Criteria Decision Making ((MCDM))

Abstract

Dynamic multiple criteria decision making (DMCDM) represents an extension of classical multiple criteria decision making to a context in which all variables are depending on time. This complex decision making problem requires the development of methodologies able to incorporate different and conflicting goals in a satisfying design of policies. We formulate two different goal programming models, namely a weighted goal programming model and a goal programming model with satisfaction functions, for solving DMCDM models. We present an application of this methodology to analyze the trade-off between consumption and investment in a traditional Ramsey-type macroeconomic model with heterogeneous agents. For a specific realistic parameterization, such a model is solved by means of the proposed goal programming formulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • André, F. J., Cardenete, A., & Romero, C. (2009). A goal programming approach for a joint design of macroeconomic and environmental policies: A methodological proposal and an application to the Spanish economy. Environmental Management, 43, 888–898.

    Article  PubMed  ADS  Google Scholar 

  • Aouni, B., Colapinto, C., & La Torre, D. (2012). A scenario-based stochastic goal programming model with satisfaction function: Application to media management and strategy. International Journal of Multicriteria Decision Analysis, 2(4), 391–407.

    Article  Google Scholar 

  • Aouni, B., Colapinto, C., & La Torre, D. (2013). A cardinality constrained goal programming model with satisfaction function for venture capital investment decision making. Annals of Operations Research, 205, 77–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Aouni, B., Colapinto, C., & La Torre, D. (2014). Financial portfolio management through the goal programming model: Current state-of-the-art. European Journal of Operational Research, 234(2), 536–545.

    Article  MathSciNet  MATH  Google Scholar 

  • Aouni, B., Kettani, O., & Martel, J.-M. (1997). Estimation through imprecise goal programming model. In R. Caballero, F. Ruiz, & R. E. Steuer (Eds.), Advances in multi-objective and goal programming (Lecture notes in economics and mathematical systems 455, pp. 120–130). Berlin: Springer.

    Chapter  Google Scholar 

  • Aouni, B., & La Torre, D. (2010). A generalized stochastic goal programming model. Applied Mathematics and Computation, 215, 4347–4357.

    Article  MathSciNet  MATH  Google Scholar 

  • Barro, R. J., & Sala-i-Martin, X. (2004). Economic growth. Cambridge, MA: MIT Press.

    Google Scholar 

  • Charnes, A., & Cooper, W. W. (1952). Chance constraints and normal deviates. Journal of the American Statistical Association, 57, 134–148.

    Article  MathSciNet  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1959). Chance-constrained programming. Management Science, 6, 73–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Charnes, A., Cooper, W. W., & Ferguson, R. (1955). Optimal estimation of executive compensation by linear programming. Management Science, 1, 138–151.

    Article  MathSciNet  MATH  Google Scholar 

  • Engwerda, J. (2007). Multicriteria dynamic optimization problems and cooperative dynamic games (CentER Working Paper No. 2007-41). Tilburg University.

    Google Scholar 

  • Ginchev, I., La Torre, D., & Rocca, M. (2012). Optimality criteria for multi-objective dynamic optimization programs: The vector-valued Ramsey model in Banach spaces. In Nonlinear analysis and convex analysis I (pp. 54–73). Tokyo: Yokohama.

    Google Scholar 

  • Keeney, R., & Howard, R. (1976). Decisions with multiple objectives. New York: Wiley.

    Google Scholar 

  • Khanh, P. Q., & Nuong, T. H. (1988). On necessary optimality conditions in vector optimization problems. Journal of Optimization Theory and Applications, 58, 63–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Khanh, P. Q., & Nuong, T. H. (1989). On necessary and sufficient conditions in vector optimization. Journal of Optimization Theory and Applications, 63, 391–413.

    Article  MathSciNet  MATH  Google Scholar 

  • La Torre, D., & Marsiglio, S. (2010). Endogenous technological progress in a multi-sector growth model. Economic Modelling, 27, 1017–1028.

    Article  Google Scholar 

  • Lee, S. M. (1973). Goal programming for decision analysis of multiple objectives. Sloan Management Review, 14, 11–24.

    Google Scholar 

  • Marsiglio, S. (2011). On the relationship between population change and sustainable development. Research in Economics, 65, 353–364.

    Article  Google Scholar 

  • Marsiglio, S. (2014). Reassessing Edgeworth’s conjecture when population dynamics is stochastic. Journal of Macroeconomics, 42, 130–140.

    Article  Google Scholar 

  • Marsiglio, S., & La Torre, D. (2012a). Population growth and utilitarian criteria in the Lucas-Uzawa model. Economic Modeling, 29, 1197–1204.

    Article  Google Scholar 

  • Marsiglio, S., & La Torre, D. (2012b). Demographic shocks in a multi-sector growth model. Economics Bulletin, 32, 2293–2299.

    Google Scholar 

  • Martel, J.-M., & Aouni, B. (1990). Incorporating the decision-maker’s preferences in the goal programming model. Journal of Operational Research Society, 41, 1121–1132.

    Article  MATH  Google Scholar 

  • Ramsey, F. (1928). A mathematical theory of saving. The Economic Journal, 38, 543–559.

    Article  Google Scholar 

  • Romero, C. (1991). Handbook of critical issues in goal programming (124 pp.). Oxford: Pergamon Press.

    Google Scholar 

  • Sawaragi, Y., Nakayama, H., & Tanino, T. (1985). Theory of multiobjective optimization. New York: Academic Press.

    MATH  Google Scholar 

  • Smith, W. T. (2007). Inspecting the mechanism exactly: A closed-form solution to a stochastic growth model. B.E. Journal of Macroeconomics, 7, article 30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide La Torre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aouni, B., Colapinto, C., La Torre, D., Liuzzi, D., Marsiglio, S. (2015). On Dynamic Multiple Criteria Decision Making Models: A Goal Programming Approach. In: Al-Shammari, M., Masri, H. (eds) Multiple Criteria Decision Making in Finance, Insurance and Investment. Multiple Criteria Decision Making. Springer, Cham. https://doi.org/10.1007/978-3-319-21158-9_3

Download citation

Publish with us

Policies and ethics