Skip to main content

Dominant-Set Clustering Using Multiple Affinity Matrices

  • Conference paper
  • First Online:
Book cover Similarity-Based Pattern Recognition (SIMBAD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9370))

Included in the following conference series:

Abstract

Pairwise (or graph-based) clustering algorithms typically assume the existence of a single affinity matrix, which describes the similarity between the objects to be clustered. In many practical applications, however, several similarity relations might be envisaged and the problem arises as to how properly select or combine them. In this paper we offer a solution to this problem for the case of dominant sets, a well-known formalization of the notion of a cluster, which generalizes the notion of maximal clique to edge-weighted graphs and has intriguing connections to evolutionary game theory. Specifically, it has been shown that dominant sets can be bijectively related to Evolutionary Stable Strategies (ESS) - a classic notion of equilibrium in the evolutionary game theory field - of a so-called “clustering game”. The clustering game is a non-cooperative game between two-players, where the objects to cluster form the set of strategies, while the affinity matrix provides the players’ payoffs. The proposed approach generalizes dominant sets to multiple affinities by extending the clustering game, which has a single payoff, to a multi-payoff game. Accordingly, dominant sets in the multi-affinity setting become equivalent to ESSs of a corresponding multi-payoff clustering game, which can be found by means of so-called Biased Replicator Dynamics. Experiments conducted over standard benchmark datasets consistently show that the proposed combination scheme allows one to substantially improve the performance of dominant-set clustering over its single-affinity counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alata, E., Dacier, M., Deswarte, Y., Kaaâniche, M., Kortchinsky, K., Nicomette, V., Pham, V.H., Pouget, F.: Collection and analysis of attack data based on honeypots deployed on the internet. In: Gollmann, D., Massacci, F., Yautsiukhin, A. (eds.) Quality of Protection. Advances in Information Security, vol. 23, pp. 79–91. Springer, USA (2006)

    Chapter  Google Scholar 

  2. Albarelli, A., Bulò, S.R., Torsello, A., Pelillo, M.: Matching as a non-cooperative game. In: ICCV 2009, pp. 1319–1326 (2009)

    Google Scholar 

  3. Blackwell, D.: An analog of the minimax theorem for vector payoffs. Pac. J. Math. 6(11), 1–8 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  4. Contini, B.M.: A decision model under uncertainty with multiple objectives. In: Mensch, A. (ed.) Theory of Games: Techniques and Applications. Elsevier, New York (1966)

    Google Scholar 

  5. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  6. Frommlet, F.: Tag snp selection based on clustering according to dominant sets found using replicator dynamics. Adv. Data Anal. Classif. 4(1), 65–83 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gönen, M., Alpaydin, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Hamid, R., Johnson, A.Y., Batta, S., Bobick, A.F., Isbell, C.L., Coleman, G.: Detection and explanation of anomalous activities: representing activities as bags of event n-grams. In: CVPR (1), pp. 1031–1038 (2005)

    Google Scholar 

  9. Harary, F.: Graph Theory. Addison Wesley, Reading (1969)

    MATH  Google Scholar 

  10. Hérault, L., Horaud, R.: Figure-ground discrimination: a combinatorial optimization approach. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 899–914 (1993)

    Article  Google Scholar 

  11. Hung, H., Kröse, B.J.A.: Detecting f-formations as dominant sets. In: Proceedings of the 13th International Conference on Multimodal Interfaces, ICMI 2011, November 14–18 2011, Alicante, Spain, pp. 231–238 (2011). http://doi.acm.org/10.1145/2070481.2070525

  12. Kawamura, T., Kanazawa, T., Ushio, T.: Evolutionarily and neutrally stable strategies in multicriteria games. IEICE Trans. Fundam. Electr. Commun. Comput. Sci. E96–A(4), 814–820 (2013)

    Article  Google Scholar 

  13. Lozovanu, D., Solomon, D., Zelikovsky, A.: Multiobjective games and determining Pareto-Nash equilibria. Bul. Acad. Stiinte Rep. Moldova Mat. 3(49), 115–122 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference Computer Vision, vol. 2, pp. 416–423, July 2001

    Google Scholar 

  15. Pavan, M., Pelillo, M.: A new graph-theoretic approach to clustering and segmentation. In: Proceedings of the IEEE Conference Computer Vision and Pattern Recognition (CVPR), pp. 145–152 (2003)

    Google Scholar 

  16. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007)

    Article  Google Scholar 

  17. Pelillo, M.: What is a cluster? Perspectives from game theory. In: Proceedings of the NIPS Workshop on Clustering Theory (2009)

    Google Scholar 

  18. Rota Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1312–1327 (2013)

    Article  Google Scholar 

  19. Shapley, L.S.: Equilibrium points in games with vector payoffs. Naval Res. Logistics Q. 1, 57–61 (1959)

    Article  MathSciNet  Google Scholar 

  20. Somasundaram, K., Baras, J.S.: Pareto nash replies for multiobjective games. In: Technical report, Institute for Systems Research (2008)

    Google Scholar 

  21. Somasundaram, K., Baras, J.S.: Achieving symmetric Pareto Nash equilibria using biased replicator dynamics. In: Proceedings of the 48th IEEE Conference Decision and Control, pp. 7000–7005 (2009)

    Google Scholar 

  22. Topchy, A.P., Law, M.H.C., Jain, A.K., Fred, A.L.N.: Analysis of consensus partition in cluster ensemble. In: Proceedings of the 4th IEEE International Conference on Data Mining (ICDM 2004), November 1–4 2004, Brighton, UK, pp. 225–232 (2004). http://dx.doi.org/10.1109/ICDM.2004.10100

  23. Torsello, A., Rota Bulò, S., Pelillo, M.: Grouping with asymmetric affinities: a game-theoretic perspective. In: Proceedings of the IEEE Conference Computer Vision and Pattern Recognition (CVPR), pp. 292–299 (2006)

    Google Scholar 

  24. Torsello, A., Pelillo, M.: Hierarchical pairwise segmentation using dominant sets and anisotropic diffusion kernels. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 182–192. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Vascon, S., Mequanint, E.Z., Cristani, M., Hung, H., Pelillo, M., Murino, V.: A game-theoretic probabilistic approach for detecting conversational groups. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9007, pp. 658–675. Springer, Heidelberg (2015)

    Google Scholar 

  26. Wang, M., Ye, Z.L., Wang, Y., Wang, S.X.: Dominant sets clustering for image retrieval. Signal Process. 88, 2843–2849 (2008)

    Article  MATH  Google Scholar 

  27. Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  28. Zeleny, M.: Games with multiple payoffs. Int. J. Game Theor. 4(4), 179–191 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman & Hall, Boca Raton (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyasu Zemene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zemene, E., Bulò, S.R., Pelillo, M. (2015). Dominant-Set Clustering Using Multiple Affinity Matrices. In: Feragen, A., Pelillo, M., Loog, M. (eds) Similarity-Based Pattern Recognition. SIMBAD 2015. Lecture Notes in Computer Science(), vol 9370. Springer, Cham. https://doi.org/10.1007/978-3-319-24261-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24261-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24260-6

  • Online ISBN: 978-3-319-24261-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics