Skip to main content

Linear and Cyclic Carbamates via Dialkyl Carbonate Chemistry

  • Chapter
  • First Online:

Abstract

Dialkyl carbonates (DACs) as reagents have found recent application in phosgene-free synthesis of both linear and cyclic carbamates. Different types of catalysts have been investigated for the carbamoylation of aniline via dimethyl carbonate (DMC) in batch. The possibility of conducting this reaction in a fixed-bed continuously fed reactor has been investigated.

DACs have also been employed in a novel green approach to six-membered cyclic carbonates (1,3-oxazolidin-2-ones). Reaction of primary amines or hydrazines with bis(methyl carbonate) derivatives of 1,3-propanediols in the presence of potassium tert-butoxide resulted in the synthesis of several 1,3-oxazolidin-2-ones in good yield. These compounds can also be prepared by a one-step intermolecular cyclization where the 1,3-bis(methyl carbonate) intermediate is formed in situ.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Budavari S (ed) (1989) The Merck index, 11th edn. Merck & CO. INC, Rahway

    Google Scholar 

  2. Huang S, Yan B, Wang S, Ma X (2015) Recent advances in dialkyl carbonates synthesis and applications. Chem Soc Rev 44:3079–3116

    Article  CAS  Google Scholar 

  3. Tundo P, Selva M (2002) The chemistry of dimethyl carbonate. Acc Chem Res 35(9):706–716

    Article  CAS  Google Scholar 

  4. Selva M, Tundo P (2006) Highly chemoselective methylation and esterification reactions with dimethyl carbonate in the presence of NaY Faujasite. The case of mercaptophenols, mercaptobenzoic acids, and carboxylic acids bearing OH substituents. J Org Chem 71:1464–1470

    Article  CAS  Google Scholar 

  5. Aricò F, Toniolo U, Tundo P (2012) 5-Membered N-heterocyclic compounds by dimethyl carbonate chemistry. Green Chem 14:58–61

    Article  Google Scholar 

  6. Tundo P, Aricò F, Gauthier G, Baldacci A (2011) Intramolecular cyclisation of isosorbide by dimethylcarbonate chemistry. C R Chimie 14:652–655

    Article  CAS  Google Scholar 

  7. Rosamilia AE, Aricò F, Tundo P (2008) Reaction of the ambident electrophile dimethyl carbonate with the ambident nucleophile phenylhydrazine. J Org Chem 73:1559–1562

    Article  CAS  Google Scholar 

  8. McElroy CR, Aricò F, Tundo P (2012) 1,3-oxazinan-2-ones from amines and 1,3-diols through dialkyl carbonate chemistry. Synlett 23:1809–1815

    Article  CAS  Google Scholar 

  9. Selva M, Bomben A, Tundo P (1997) Selective mono-N-methylation of primary aromatic amines by dimethyl carbonate over faujasite X- and Y-type zeolites. J Chem Soc Perkin Trans 1:1041–1046

    Article  Google Scholar 

  10. Tundo P, Selva A, Perosa A, Memoli S (2002) Selective mono-C-methylations of arylacetonitriles and arylacetates with dimethylcarbonate: a mechanistic investigation. J Org Chem 67(4):1071–1077

    Article  CAS  Google Scholar 

  11. Tundo P, Selva M, Bomben A (1999) Mono-C-methylation of arylacetonitriles and methyl arylacetates by dimethyl carbonate: a general method for the synthesis of pure 2-arylpropionic acids. 2-phenylpropionic acid. Org Synth 76:169–172

    Article  CAS  Google Scholar 

  12. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    Article  CAS  Google Scholar 

  13. Liu AH, Li YN, He LN (2012) Organic synthesis using carbon dioxide as phosgene-free carbonyl reagent. Pure Appl Chem 84(3):581–602

    CAS  Google Scholar 

  14. Wu TT, Huang J, Arrington ND, Dill GM (1987) Synthesis and herbicidal activity of alpha-heterocyclic carbinol carbamates. J Agric Food Chem 35(5):817–823

    Article  CAS  Google Scholar 

  15. Rivetti F, Romano U, Sasselli M. (1985) Process for preparing alkyl isocyanates. US Patent 4,514,339

    Google Scholar 

  16. Greene T, Wuts P (2007) Greene’s protective groups in organic synthesis, 4th edn. Wiley, Hoboken

    Google Scholar 

  17. Yagii T, Itokazu T, Oka K, Tanaka Y, Kojima H. (1998) Process for preparation of aliphatic diisocyanate compounds. Patent US 5,789,614

    Google Scholar 

  18. Laqua G, Schoner U, Otterbach A, Schwarz HV. (1997) A process for the preparation of organic diurethanes and / or polyurethanes and to their use for the production of di- and/or polyisocyanates. Patent DE 19541384 A1

    Google Scholar 

  19. Babad H, Zieler AG (1973) Chemistry of phosgene. Chem Rev 3(1):75–91

    Article  Google Scholar 

  20. Eckert H, Foster B (1987) Triphosgene, a crystalline phosgene substitute. Angew Chem Int Ed Engl 26(9):894–895

    Article  Google Scholar 

  21. Costarca L, Delogu P, Nardelli A, Sunjic V (1996) Bis(trichloromethyl) carbonate in organic synthesis. Synthesis 5:553–576

    Article  Google Scholar 

  22. Cotarca L, Ecket H (2003) Phosgenations – a handbook. Wiley-VCH/Verlag GmbH & Co., Weinheim

    Book  Google Scholar 

  23. Ragaini F (2009) Away from phosgene: reductive carbonylation of nitroarenes and oxidative carbonylation of amines, understanding the mechanism to improve performance. Dalton Trans 32:6251–6266

    Article  Google Scholar 

  24. Yoshida M, Hara N, Okuyama S. (2000) Catalytic production of urethanes from amines and alkyl halides in supercritical carbon dioxide. Chem Commun :151–152

    Google Scholar 

  25. Aresta M, Giannoccaro P, Tommasi I (1994) Carbamoyl complexes as a source of isocyanates or carbamyl chlorides. J Organomet Chem 476(1):13–18

    Article  Google Scholar 

  26. Valli V, Alper H (1995) A simple convenient, and efficient method for the synthesis of isocyanates from urethanes. J Org Chem 60:257–258

    Article  CAS  Google Scholar 

  27. Butler D, Alper H (1998) Synthesis of isocyanates from carbamate esters employing boron trichloride. Chem Commun 23:2575–2576

    Article  Google Scholar 

  28. Sundermeyer J, Fuming M. (2006) Production of n-aryl carbamates and n-aryl isocyanates. WO Patent 2006131381 A1

    Google Scholar 

  29. Chaudhari AB, Gupte SP, Chaudhari RV (2004) Carbamate synthesis via transfunctionalization of substituted ureas and carbonates. J Mol Catal A 223(1-2):85–92

    Article  Google Scholar 

  30. Zhou H, Shi F, Tian X, Zhang Q, Deng Y (2007) Synthesis of carbamates from aliphatic amines and dimethyl carbonate catalyzed by acid functional ionic liquids. J Mol Catal A Chem 271:89–92

    Article  CAS  Google Scholar 

  31. Distaso M, Quaranta E (2006) Highly selective carbamation of aliphatic diamines under mild conditions using Sc(OTf)3 as catalyst and dimethyl carbonate as a phosgene substitute. Appl Catal B Environ 66:72–80

    Article  CAS  Google Scholar 

  32. Tundo P, Bressanello S, Loris A, Sathicq G (2005) Direct synthesis of N-methylurethanes from primary amines with dimethyl carbonate. Pure Appl Chem 77(10):1719–1725

    Article  CAS  Google Scholar 

  33. Distaso M, Quaranta E (2004) Carbomethoxylating reactivity of methyl phenyl carbonate toward aromatic amines in the presence of group 3 metal (Sc, La) triflate catalysts. J Catal 228(1):36–42

    Article  CAS  Google Scholar 

  34. Baba T, Kobayashi A, Yamauchi T, Tanaka H, Aso S, Inomata M, Kawanami Y (2002) Catalytic methoxycarbonylation of aromatic diamines with dimethyl carbonate to their dicarbamates using zinc acetate. Catal Lett 82(3):193–197

    Article  CAS  Google Scholar 

  35. Dhakshinamoorthy A, Alvaro M, Garcia H (2010) Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Appl Catal A Gen 378:19–25

    Article  CAS  Google Scholar 

  36. Gooden PN, Bourne RA, Parrott AJ, Bevinakatti HS, Irvine DJ, Poliakoff M (2010) Continuous acid-catalyzed methylations in supercritical carbon dioxide: comparison of methanol, dimethyl ether and dimethyl carbonate as methylating agents. Org Proc Res Dev 14(2):411–416

    Article  CAS  Google Scholar 

  37. Distaso M, Quaranta E (2008) Sc(OTf)3-catalyzed carbomethoxylation of aliphatic amines with dimethyl carbonate (DMC): DMC activation by η1-O(C = O) coordination to Sc(III) and its relevance to catalysis. J Catal 253:278–288

    Article  CAS  Google Scholar 

  38. Zhou H, Shi F, Tian X, Ahang Q, Deng Y (2007) Synthesis of carbamates from aliphatic amines and dimethyl carbonate catalyzed by acid functional ionic liquids. J Mol Catal A 271(1-2):89–92

    Article  CAS  Google Scholar 

  39. Curini M, Epifano F, Maltese F, Rosati O (2002) Carbamate synthesis from amines and dimethyl carbonate under ytterbium triflate catalysis. Tetrahedron Lett 43(28):4895–4897

    Article  CAS  Google Scholar 

  40. Sima T, Guo S, Shi F, Deng Y (2002) The syntheses of carbamates from reactions of primary and secondary aliphatic amines with dimethyl carbonate in ionic liquids. Tetrahedron Lett 43(45):8145–8147

    Article  CAS  Google Scholar 

  41. Fu ZH, Ono Y (1994) Synthesis of methyl N-phenyl carbamate by methoxycarbonylation of aniline with dimethyl carbonate using Pb compounds as catalysts. J Mol Cat 91(3):399–405

    Article  CAS  Google Scholar 

  42. Gurgiolo AE (1981) Preparation of carbamates from aromatic amines and organic carbonates. US patent 4,268,683 A

    Google Scholar 

  43. Bosetti A, Cesti P, Cauchi E (1997) Process for the production of aromatic urethanes. US 5,688,988 A

    Google Scholar 

  44. Bosetti A, Cesti P, Calderazzo F (1997) Process for the production of aromatic carbamates. US patent 5,698,731 A

    Google Scholar 

  45. Zhao X, Wang Y, Wang S, Yang H, Zhang J (2002) Synthesis of MDI from dimethyl carbonate over solid catalysts. Ind Eng Chem Res 41(21):5139–5144

    Article  CAS  Google Scholar 

  46. Wang Y, Zhao X, Li F, Wang S, Zhang J (2001) Catalytic synthesis of toluene-2,4-diisocyanate from dimethyl carbonate. J Chem Technol Biotechnol 76(8):857–861

    Article  CAS  Google Scholar 

  47. Juárez R, Concepción P, Corma A, Fornés V, Garcia H (2010) Gold-catalyzed phosgene-free synthesis of polyurethane precursors. Angew Chem Int Ed 49(7):1286–1290

    Article  Google Scholar 

  48. Sun J, Yang B, Lin H (2004) A semi-continuous process for the synthesis of methyl carbamate from urea and methanol. Chem Eng Technol 27(4):435–439

    Article  CAS  Google Scholar 

  49. Liang M, Lee TJ, Huang CC, Lin KY (2007) A non-phosgene route synthesis of carbamate in continuous fixed bed reactor. J Chin Chem Soc 54(4):885–892

    Article  CAS  Google Scholar 

  50. Wershofen S, Klein S, Vidal-Ferran A, Reixach E, Rius-Riuz F (2010) Process for preparing aromatic carbamates. European patent EP 2,230,228 A1

    Google Scholar 

  51. Grego S, Aricò F, Tundo P (2013) Highly selective phosgene-free carbamoylation of aniline by dimethyl carbonate under continuous-flow conditions. Org Process Res Dev 17(4):679–683

    Article  CAS  Google Scholar 

  52. Guo X, Shang J, Li J, Wang L, Ma Y, Shi F, Deng Y (2011) Green and practical synthesis of carbamates from ureas and organic carbonates. Synth Commun 41(8):1102–1111

    Article  CAS  Google Scholar 

  53. Gupte SP, Shivarkar AB, Chaudhari RV (2001) Carbamate synthesis by solid-base catalyzed reaction of disubstituted ureas and carbonates. Chem Commun 24:2620–2621

    Article  Google Scholar 

  54. Tamura M, Honda M, Nakagawa Y, Tomishige K (2014) Direct conversion of CO2 with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. J Chem Technol Biotechnol 89(1):19–33

    Article  CAS  Google Scholar 

  55. Miller K, Neilan B, Sze DMY (2008) Development of Taxol and other endophyte produced anti-cancer agents. Recent Pat Anti-Cancer Drug Discov 3(1):14–19

    Article  CAS  Google Scholar 

  56. Mukhtar TA, Wright GD (2005) Streptogramins oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem Rev 105:529–542

    Article  CAS  Google Scholar 

  57. Vintonyak VV, Calà M, Lay F, Kunze B, Sasse F, Maier ME (2008) Synthesis and biological evaluation of cruentaren A analogues. Chem Eur J 14(12):3709–3720

    Article  CAS  Google Scholar 

  58. Gzara L, Chagnes A, Carré B, Dhahbi M, Lemordant D (2006) Is 3-methyl- 2-oxazolidinone a suitable solvent for lithium-ion batteries? J Power Sources 156(2):634–644

    Article  CAS  Google Scholar 

  59. Selvakumar N, Srinivas D, Khera MK, Kumar MS, Mamidi RN, Sarnaik H, Charavaryamath C, Rao BS, Raheem MA, Das J, Iqbal J, Rajagopalan R (2002) Synthesis of conformationally constrained analogues of linezolid: structure − activity relationship (SAR) studies on selected novel tricyclic oxazolidinones. J Med Chem 45(18):3953–3962

    Article  CAS  Google Scholar 

  60. Evans DA, Bartroli J, Shih TL (1981) Enantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolates. J Am Chem Soc 103(8):2127–2129

    Article  CAS  Google Scholar 

  61. Ager DJ, Prakash I, Schaad DR (1996) 1,2-amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem Rev 96:835–875

    Article  CAS  Google Scholar 

  62. Ghosh AK, Bilcer G, Schiltz G (2001) Syntheses of FDA approved HIV protease inhibitors. Synthesis 15:2203–2229

    Article  Google Scholar 

  63. List B, Castello C (2001) A novel proline-catalyzed three-component reaction of ketones, aldehydes, and meldrum’s acid. Synlett 11:1687–1689

    Article  Google Scholar 

  64. Fuchs K, Eickmeier C, Heine N, Peters S, Dorner-Ciossek C, Handschuh S, Nar H, Klinder K (2010) US Patent 2010/144681 A1

    Google Scholar 

  65. Berger R, Chang L, Edmonson SD, Goble SD, Harper B, Kar NF, Kopka IE, Li B, Morriello GJ, Moyes CR, Shen DM, Wang L, Wendt H, Zhu C (2009) Hydroxymethyl pyrrolidines as beta 3 adrenergic receptor agonists. Patent WO 2009/123870 A1

    Google Scholar 

  66. Li Y, Yao W, Rodgers J (2009) Patent: WO 2009/64835 A1

    Google Scholar 

  67. Ali A, Sinclair PJ, Taylor GE (2009) Cholesteryl ester transfer protein inhibitors. US Patent 2009/018054 A1

    Google Scholar 

  68. Tomokazu H, Yasuko Y, Toshihiko S, Koki M (2009) Haloalkylsulfonanilide derivative or salt thereof, herbicide comprising the derivative as active ingredient, and use of the herbicide. Patent EP 2085392 A1

    Google Scholar 

  69. Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem Rev 109(11):5924–5973

    Article  CAS  Google Scholar 

  70. Suzuki M, Ii A, Saegusai T (1992) Multibranching polymerization: palladium-catalyzed ring-opening polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine. Macromolecules 25:7071–7072

    Article  CAS  Google Scholar 

  71. Suzuki M, Yoshida S, Shiraga K, Saegusa T (1998) New ring-opening polymerization via a π-allylpalladium complex. 5. Multibranching polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine. Macromolecules 31(6):1716–1719

    Article  CAS  Google Scholar 

  72. Kreye O, Mutlu H, Meier MAR (2013) Sustainable routes to polyurethane precursors. Green Chem 15(6):1431–1455

    Article  CAS  Google Scholar 

  73. Winter C, Rheinheimer J, Wolf A, Poonoth M, Terteryan V, Wiebe C, Kremzow-Graw D, Röhl F, Grammenos W, Rohrer SG, Wieja A, Rosenbaum C (2014) Strobilurin type compounds for combating phytopathogenic fungi. Patent WO2014/207052

    Google Scholar 

  74. Murdock KC (1968) 2-Oxazolidinones from an N-dealkylation reaction of phosgene with dialkylaminoalkanols. Isolation and reactivities of an N-acyl quaternary ammonium intermediate. J Org Chem 33(4):1367–1371

    Article  CAS  Google Scholar 

  75. Jung JC, Avery MA (2006) An efficient synthesis of cyclic urethanes from Boc-protected amino acids through a metal triflate-catalyzed intramolecular diazocarbonyl insertion reaction. Tetrahedron Lett 47(45):7969–7972

    Article  CAS  Google Scholar 

  76. Wang G, Ella-Menye JR, Sharma V (2006) Synthesis and antibacterial activities of chiral 1,3-oxazinan-2-one derivatives. Bioorg Med Chem Lett 16(8):2177–2181

    Article  CAS  Google Scholar 

  77. Trifunovic S, Dimitrijevic D, Vasic G, Vukicevic RD, Radulovic N, Vukicevic M, Heinemann FW (2010) New simple synthesis of N-substituted 1,3-oxazinan-2-ones. Synthesis 6:943–946

    Google Scholar 

  78. Kušan J, Keul H, Hocker H (2001) Cationic ring-opening polymerization of tetramethylene urethane. Macromolecules 34(3):389–395

    Article  Google Scholar 

  79. Shibata I, Nakamura K, Baba A, Matsuda H (1989) Formation of N-Tributylstannyl heterocycle from bis(tributyltin) oxide and ω-haloalkyl isocyanate. One-pot convenient synthesis of 2-oxazolidinones and tetrahydro-2h-1,3-oxazin-2-one. Bull Chem Soc Jpn 62:853–859

    Article  CAS  Google Scholar 

  80. Shibata I, Imoto T, Baba A, Matsuda H (1987) Cycloaddition of oxetanes with heterocumulenes catalyzed by organotin iodide-lewis base complex. J Heterocycl Chem 24(2):361–363

    Article  CAS  Google Scholar 

  81. Fujiwara M, Baba A, Matsuda H (1989) The cycloaddition of heterocumulenes to oxetanes in the presence of catalytic amounts of tetraphenylstibonium iodide. J Hetrocycl Chem 26(6):1659–1663

    Article  CAS  Google Scholar 

  82. Baba A, Shibata I, Fujiwara M, Matsuda H (1985) Novel use of organotin halide-base complex in organic synthesis. Cycloaddition reaction of oxetane with isocyanates. Tetrahedron Lett 26(42):5167–5170

    Article  CAS  Google Scholar 

  83. Kayaki Y, Mori N, Ikariya T (2009) Palladium-catalyzed carboxylative cyclization of α-allenyl amines in dense carbon dioxide. Tetrahedron Lett 50(47):6491–6493

    Article  CAS  Google Scholar 

  84. Rice GT, White MC (2009) Allylic C–H amination for the preparation of syn-1,3-amino alcohol motifs. J Am Chem Soc 131(33):11707–11711

    Article  CAS  Google Scholar 

  85. Nahra F, Liron F, Prestat G, Mealli C, Messaoudi A, Poli G (2009) Striking AcOH acceleration in direct intramolecular allylic amination reactions. Chem Eur J 15:11078–11082

    Article  CAS  Google Scholar 

  86. Mangelinckx S, Nural Y, Dondas HA, Denolf B, Sillanpaa R, De Kimpe N (2010) Diastereoselective synthesis of 6-functionalized 4-aryl-1,3-oxazinan-2-ones and their application in the synthesis of 3-aryl-1,3-aminoalcohols and 6-arylpiperidine-2,4-diones. Tetrahedron 66:4115–4124

    Article  CAS  Google Scholar 

  87. Kim YJ, Varma RS (2004) Microwave-assisted preparation of cyclic ureas from diamines in the presence of ZnO. Tetrahedron Lett 45(39):7205–7208

    Article  CAS  Google Scholar 

  88. Ella-Menye JR, Sharma V, Wang G (2005) New synthesis of chiral 1,3-oxazinan-2-ones from carbohydrate derivatives. J Org Chem 70(2):463–469

    Article  CAS  Google Scholar 

  89. Paz J, Pèrez-Balado C, Iglesias B, Munoz L. Carbon dioxide as a carbonylating agent in the synthesis of 2-Oxazolidinones, 2-Oxazinones, and cyclic ureas: scope and limitations. J Org Chem 75 (9):3037–3046

    Google Scholar 

  90. Juárez R, Concepción P, Corma A, García H (2010) Ceria nanoparticles as heterogeneous catalyst for CO2 fixation by ω-aminoalcohols. Chem Commun 46:4181–4183

    Article  Google Scholar 

  91. Bhanage BM, Fujita S, Ikushima Y, Arai M (2004) Non-catalytic clean synthesis route using urea to cyclic urea and cyclic urethane compounds. Green Chem 6:78–80

    Article  CAS  Google Scholar 

  92. Xie Y, Yu K, Gu Z (2014) Stereoselective synthesis of 1,3-amino alcohols by the Pd-catalyzed cyclization of trichloroacetimidates. J Org Chem 79(3):1289–1302

    Article  CAS  Google Scholar 

  93. McElroy CR, Aricò F, Benetollo F, Tundo P (2012) Cyclization reaction of amines with dialkyl carbonates to yield 1,3-oxazinan-2-ones. Pure Appl Chem 84(3):707–719

    CAS  Google Scholar 

  94. Tundo P, McElroy CR, Aricò F (2010) Synthesis of carbamates from amines and dialkyl carbonates: influence of leaving and entering groups. Synlett 10:1567–1571

    Article  Google Scholar 

  95. Dox AW, Yoder L (1923) Gamma-chloropropyl urethans and a synthesis of the 1,3-oxazine ring. J Am Chem Soc 45(3):723–727

    Article  CAS  Google Scholar 

  96. Tundo P, Aricò F, Rosamilia AE, Rigo M, Maranzana A, Tonachini G (2009) Reaction of dialkyl carbonates with alcohols: defining a scale of the best leaving and entering groups. Pure Appl Chem 81(11):1971–1979

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Tundo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aricò, F., Aldoshin, A., Tundo, P. (2016). Linear and Cyclic Carbamates via Dialkyl Carbonate Chemistry. In: Tundo, P., He, LN., Lokteva, E., Mota, C. (eds) Chemistry Beyond Chlorine. Springer, Cham. https://doi.org/10.1007/978-3-319-30073-3_19

Download citation

Publish with us

Policies and ethics