Skip to main content

Applying Reversibility Theory for the Performance Evaluation of Reversible Computations

  • Conference paper
  • First Online:
Book cover Analytical and Stochastic Modelling Techniques and Applications (ASMTA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9845))

Abstract

Reversible computations have been widely studied from the functional point of view and energy consumption. In the literature, several authors have proposed various formalisms (mainly based on process algebras) for assessing the correctness or the equivalence among reversible computations. In this paper we propose the adoption of Markovian stochastic models to assess the quantitative properties of reversible computations. Under some conditions, we show that the notion of time-reversibility for Markov chains can be used to efficiently derive some performance measures of reversible computations. The importance of time-reversibly relies on the fact that, in general, the process’s stationary distribution can be derived efficiently by using numerically stable algorithms. This paper reviews the main results about time-reversible Markov processes and discusses how to apply them to tackle the problem of the quantitative evaluation of reversible computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By purely reversible computations we mean those computations in which each step can be undone and there are no segments in which the execution direction is forward only.

  2. 2.

    We exclude the \(\tau \) self-loops from the definition of stochastic automaton in order to simplify the semantics of synchronisation. Indeed, the \(\tau \) self-loops are irrelevant for the equilibrium distribution of the CTMC underlying the automaton.

References

  1. Artalejo, J.R., Economou, A., Lopez-Herrero, M.J.: The maximum number of infected individuals in SIS epidemic models: computational techniques and quasi-stationary distributions. J. Comput. Appl. Math. 233, 2563–2574 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbierato, E., Dei Rossi, G.-L., Gribaudo, M., Iacono, M., Marin, A.: Exploiting product forms solution techniques in multiformalism modeling. Electr. Notes Theor. Comput. Sci. 296, 61–77 (2013)

    Article  Google Scholar 

  3. Barbour, A.D.: Quasi-stationary distributions in markov population processes. Adv. Appl. Prob. 8, 296–314 (1976)

    MathSciNet  MATH  Google Scholar 

  4. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed networks of queues with different classes of customers. J. ACM 22(2), 248–260 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bugliesi, M., Gallina, L., Hamadou, S., Marin, A., Rossi, S.: Behavioural equivalences and interference metrics for mobile ad-hoc networks. Perform. Eval. 73, 41–72 (2014)

    Article  Google Scholar 

  6. Casale, G., Smirni, E.: KPC-toolbox: fitting markovian arrival processes and phase-type distributions with MATLAB. SIGMETRICS Perform. Eval. Rev. 39(4), 47 (2012)

    Article  Google Scholar 

  7. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Gallina, L., Hamadou, S., Marin, A., Rossi, S.: A probabilistic energy-aware model for mobile ad-hoc networks. In: Al-Begain, K., Balsamo, S., Fiems, D., Marin, A. (eds.) ASMTA 2011. LNCS, vol. 6751, pp. 316–330. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Gordon, W.J., Newell, G.F.: Cyclic queueing networks with exponential servers. Oper. Res. 15(2), 254–265 (1967)

    Article  MATH  Google Scholar 

  10. Harrison, P.G.: Turning back time in Markovian process algebra. Theoret. Comput. Sci. 290(3), 1947–1986 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harrison, P.G.: Reversed processes, product forms and a non-product form. Elsevier Linear Algebra Appl. 386, 359–381 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  13. Hillston, J., Marin, A., Piazza, C., Rossi, S.: Contextual iumpability. In: Proceedings of Valuetools 2013 Conference. ACM Press (2013)

    Google Scholar 

  14. Jackson, J.R.: Jobshop-like queueing systems. Manag. Sci. 10, 131–142 (1963)

    Article  Google Scholar 

  15. Kant, K.: Introduction to Computer System Performance Evaluation. McGraw-Hill, New York (1992)

    Google Scholar 

  16. Kelly, F.: Reversibility and Stochastic Networks. Wiley, New York (1979)

    MATH  Google Scholar 

  17. Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS 114, 17 (2014)

    MathSciNet  Google Scholar 

  18. Marin, A., Rossi, S.: On discrete time reversibility modulo state renaming and its applications. In: Proceedings of Valuetools 2014 Conference (2014)

    Google Scholar 

  19. Marin, A., Rossi, S.: On the relations between lumpability and reversibility. In: Proceedings of MASCOTS 2014, pp. 427–432 (2014)

    Google Scholar 

  20. Marin, A., Rossi, S.: Quantitative analysis of concurrent reversible computations. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 206–221. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  21. Mészáros, A., Papp, J., Telek, M.: Fitting traffic traces with discrete canonical phase type distributions and Markov arrival processes. Appl. Math. Comput. Sci. 24(3), 453–470 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Perumalla, K.S.: Introduction to Reversible Computing. CRC Press, Boca Raton (2013)

    Google Scholar 

  23. Plateau, B.: On the stochastic structure of parallelism and synchronization models for distributed algorithms. SIGMETRICS Perf. Eval. Rev. 13(2), 147–154 (1985)

    Article  Google Scholar 

  24. Ross, S.M.: Stochastic Processes, 2nd edn. Wiley, Hoboken (1996)

    MATH  Google Scholar 

  25. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  26. Whittle, P.: Systems in Stochastic Equilibrium. Wiley, Hoboken (1986)

    MATH  Google Scholar 

  27. Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-interpreter. In: Proceedings of the 2007 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation, pp. 144–153, New York, NY, USA. ACM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Marin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Balsamo, S., Cavallin, F., Marin, A., Rossi, S. (2016). Applying Reversibility Theory for the Performance Evaluation of Reversible Computations. In: Wittevrongel, S., Phung-Duc, T. (eds) Analytical and Stochastic Modelling Techniques and Applications. ASMTA 2016. Lecture Notes in Computer Science(), vol 9845. Springer, Cham. https://doi.org/10.1007/978-3-319-43904-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43904-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43903-7

  • Online ISBN: 978-3-319-43904-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics