Skip to main content

Environmental Effects of nZVI for Land and Groundwater Remediation

  • Chapter
  • First Online:
Nanotechnologies for Environmental Remediation

Abstract

The development of nanostructured materials enable the upgrade of traditional treatment with macro- and micro-sized iron. Nano-zerovalent iron (nZVI) present interesting characteristics like high surface-area-to-volume ratio, levels of stepped surface, and surface energies. nZVI is typically made of 5-40 nm sized Fe0/Fe-oxide particles and can rapidly transform many environmental contaminants into less harmful products (e.g. dehalogenation or metal reduction) being promising as an in situ remediation agent. We present the state-of-the-art of nZVI based treatment technologies considering their environmental and (eco-)toxicological implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bardos P, Bone B, Daly P, Elliott D, Jones S, Lowry G, Merly C (2015) A risk/benefit appraisal for the application of nano-scale zero valent Iron (nZVI) for the remediation of contaminated sites supporting MS3—NanoRem information for decision makers—initial version. Taking nanotechnological remediation processes from lab scale to end user applications for the restoration of a clean environment project Nr.: 309517 EU, 7th FP, NMP.2012.1.2 WP9: Dissemination, Dialogue with Stakeholders and Exploitation

    Google Scholar 

  • Biswas P, Wu CY (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55(6):708–746

    Article  Google Scholar 

  • Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Dai J, Dendooven L, Peres G, Tondoh JE, Cluzeau D, Brun J-J (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64(2):161–182

    Article  Google Scholar 

  • Čábalová L, Čabanová K, Bielniková H, Kukutschová J, Dvořáčková J, Dědková K, Zelenik K, Komínek P (2015) Micro-and nanosized particles in nasal mucosa: a pilot study. BioMed Res Int

    Google Scholar 

  • Comba S, Di Molfetta A, Sethi, R (2011) A comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut 215(1–4):595–607

    Google Scholar 

  • Dong H, Lo IMC (2013) Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron. Water Res 47(1):419–427

    Article  Google Scholar 

  • Dong H, Ahmad K, Zeng G, Li Z, Chen G, He Q, Xie Y, Wu Y, Zhao F, Zeng Y (2016) Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron. Environ Pollut 211:363–369

    Article  Google Scholar 

  • DuPont Chemicals (2007) Nanomaterial risk assessment worksheet: zero valent nano sized iron nanoparticles (nZVI) for environmental remediation

    Google Scholar 

  • Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926

    Article  Google Scholar 

  • El-Temsah YS, Sevcu A, Bobcikova K, Cernik M, Joner EJ (2016) DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 144:2221–2228

    Article  Google Scholar 

  • EPA (2007) Nanotechnology white paper. EPA 100/B-07/001

    Google Scholar 

  • ESTCP (2006) Protocol for enhanced in situ bioremediation using emulsified edible oil industrial environmental services

    Google Scholar 

  • Gornati R, Pedretti E, Rossi F, Cappellini F, Zanella M, Olivato I, Sabbioni E, Bernardini G (2016) Zerovalent Fe, Co and Ni nanoparticle toxicity evaluated on SKOV-3 and U87 cell lines. J Appl Toxicol 36(3):385–393

    Article  Google Scholar 

  • Guan X, Sun Y, Qin H, Li J, Lo IM, He D, Dong H (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res 75:224–248

    Article  Google Scholar 

  • Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects: pros and cons. Environ Health Perspect 1818–1825

    Google Scholar 

  • Hussain I, Raschid L, Hanjra MA, Marikar F, Van Der Hoek W (2002) Wastewater use in agriculture: review of impacts and methodological issues in valuing impacts: with an extended list of bibliographical references, vol 37, Iwmi

    Google Scholar 

  • Jung B, O’Carroll D, Sleep B (2014) The influence of humic acid and clay content on the transport of polymer-coated iron nanoparticles through sand. Sci Total Environ 496:155–164

    Article  Google Scholar 

  • Keenan CR, Goth-Goldstein R, Lucas D, Sedlak DL (2009) Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ Sci Technol 43(12):4555–4560

    Article  Google Scholar 

  • Kim JY, Park HJ, Lee C, Nelson KL, Sedlak DL, Yoon J (2010) Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. Appl Environ Microbiol 76(22):7668–7670

    Article  Google Scholar 

  • Kirschling TL, Gregory KB, Minkley EG Jr, Lowry GV, Tilton RD (2010) Impact of nanoscale zerovalent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44(9):3474–3480

    Article  Google Scholar 

  • Lee CC, Lien HL, Wu SC, Doong RA, Chao CC (2014) Reduction of priority pollutants by nanoscale zerovalent iron in subsurface environments. Aquananotechnol Glob Prospects 63

    Google Scholar 

  • Lefevre E, Bossa N, Wiesner MR, Gunsch CK (2016, in proof) A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Sci Total Environ. doi:10.1016/j.scitotenv.2016.02.003

  • Libralato G, Costa Devoti A, Zanella M, Sabbioni E, Mičetić I, Manodori L, Pigozzo A, Manenti S, Groppi F, Ghirardini AV (2016) Phytotoxicity of ionic, micro-and nano-sized iron in three plant species. Ecotoxicol Environ Saf 123:81–88

    Article  Google Scholar 

  • Lin Y-H, Tseng H-H, Wey M-Y, Lin M-D (2010) Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Sci Total Environ 408(10):2260–2267

    Article  Google Scholar 

  • Liu Y, Li S, Chen Z, Megharaj M, Naidu R (2014) Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp. Chemosphere 108:426–432

    Article  Google Scholar 

  • Liu A, Liu J, Han J, Zhang W-X (2016, in proof) Evolution of nanoscale zero-valent iron (nZVI) in water: microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. J Hazard Mater. doi:10.1016/j.jhazmat.2015.12.070

  • Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target 12(9–10):635–641

    Google Scholar 

  • Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim H, Bernhardt ES, Matson CW, Wiesner MR (2012) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46(13):7027–7036

    Article  Google Scholar 

  • Ma X, Gurung A, Deng Y (2013) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–849

    Article  Google Scholar 

  • Marsalek B, Jancula D, Marsalkova E, Mashlan M, Safarova K, Tucek J, Zboril R (2012) Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environ Sci Technol 46(4):2316–2323

    Article  Google Scholar 

  • Masciangioli T, Zhang WX (2003) Peer reviewed: environmental technologies at the nanoscale. Environ Sci Technol 37(5):102A–108A

    Article  Google Scholar 

  • MinAmb (2015) Ministero dell’Ambiente e dela Tutela del Territorio e del Mare. http://www.minambiente.it/

  • NATO (1998) NATO/CCMS pilot study evaluation of demonstrated and emerging technologies for the treatment of contaminated land and groundwater (phase III)

    Google Scholar 

  • Noubactep C (2010) The fundamental mechanism of aqueous contaminant removal by metallic iron. Water SA 36:663–670

    Article  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230

    Article  Google Scholar 

  • O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

    Article  Google Scholar 

  • Park CM, Chu KH, Heo J, Her N, Jang M, Son A, Yoon Y (2016) Environmental behavior of engineered nanomaterials in porous media: a review. J Hazard Mater 309:133–150

    Article  Google Scholar 

  • Peeters K, Lespes G, Zuliani T, Ščančar J, Milačič R (2016) The fate of iron nanoparticles in environmental waters treated with nanoscale zero-valent iron, FeONPs and Fe3O4NPs. Water Res 94:315–327

    Article  Google Scholar 

  • Phenrat T, Long TC, Lowry GV, Veronesi B (2008) Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43(1):195–200

    Article  Google Scholar 

  • Raychoudhury T, Tufenkji N, Ghoshal S (2012) Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Res 46(6):1735–1744

    Article  Google Scholar 

  • Rickerby DG, Morrison M (2007) Report from the workshop on nanotechnologies for environmental remediation

    Google Scholar 

  • Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters. Environmental Science and Technology Series

    Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48

    Article  Google Scholar 

  • USEPA (2005a) Nanoscale ZVI injection rapidly reduced source CVOCs in bedrock ground water

    Google Scholar 

  • USEPA (2005b) Workshop on nanotechnology for site remediation U.S. Department of Commerce, Washington, DC, 20–21 Oct 2005

    Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156

    Article  Google Scholar 

  • Wang J, Fang Z, Cheng W, Yan X, Tsang PE, Zhao D (2016) Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation. Environ Pollut 210:338–345

    Article  Google Scholar 

  • Xiu ZM, Jin ZH, Li TL, Mahendra S, Lowry GV, Alvarez PJ (2010) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol 101(4):1141–1146

    Article  Google Scholar 

  • Yang Y, Guo J, Hu Z (2013) Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water Res 47(17):6790–6800

    Article  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332

    Article  Google Scholar 

  • Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 100:245–266

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Libralato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Libralato, G., Costa Devoti, A., Volpi Ghirardini, A., Vignati, D.A.L. (2017). Environmental Effects of nZVI for Land and Groundwater Remediation. In: Lofrano, G., Libralato, G., Brown, J. (eds) Nanotechnologies for Environmental Remediation. Springer, Cham. https://doi.org/10.1007/978-3-319-53162-5_10

Download citation

Publish with us

Policies and ethics