Skip to main content

Analysis of Performance in Depth Based Routing for Underwater Wireless Sensor Networks

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 825))

Abstract

In the last decade, Underwater Wireless Sensor Networks (UWSNs) have been widely studied because of their peculiar aspects that distinguish them from common wireless terrestrial networks. In fact, most UWSNs use acoustic instead of radio-frequency based communications, and nodes are subject to high mobility caused by water currents. As a consequence, specialised routing algorithms have been developed to tackle this challenging scenario. Depth based Routing (DBR) is one of the first protocols that have been developed to this aim, and is still widely adopted in actual implementations of UWSNs. In this paper we propose a stochastic analysis that aims at evaluating the performance of UWSNs using DBR in terms of expected energy consumption and expected end-to-end delay. Under a set of assumptions, we give expressions for these performance indices that can be evaluated efficiently, and hence they can be adopted as the basis for optimizing the configuration parameters of the protocol.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abedi, A., Ghaderi, M., Williamson, C.L.: Distributed routing for vehicular ad hoc networks: throughput-delay tradeoff. In: Proceedings of MASCOTS, pp. 47–56 (2010)

    Google Scholar 

  2. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc Netw. 3(3), 257–279 (2005)

    Article  Google Scholar 

  3. Ancillotti, E., Bruno, R., Conti, M.: Design and performance evaluation of throughput-aware rate adaptation protocols for IEEE 802.11 wireless networks. Perform. Eval. 66(12), 811–825 (2009)

    Article  Google Scholar 

  4. Baccelli, F., Blaszczyszyn, B.: Stochastic Geometry and Wireless Networks. Volume I - Theory. Foundations and Trends in Networking, vol. 3. NoW Publisher, Breda (2009)

    MATH  Google Scholar 

  5. Berkhovskikh, L., Lysanov, Y.: Fundamentals of Ocean Acoustics. Springer Series in Electronics and Photonics, vol. 8. Springer, Heidelber (1982). https://doi.org/10.1007/978-3-662-02342-6

    Book  Google Scholar 

  6. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013)

    Article  Google Scholar 

  7. Bruneo, D., Scarpa, M., Bobbio, A., Cerotti, D., Gribaudo, M.: Markovian agent modeling swarm intelligence algorithms in wireless sensor networks. Perform. Eval. 69(3–4), 135–149 (2012)

    Article  Google Scholar 

  8. Bugliesi, M., Gallina, L., Hamadou, S., Marin, A., Rossi, S.: Behavioural equivalences and interference metrics for mobile ad-hoc networks. Perform. Eval. 73, 41–72 (2014)

    Article  Google Scholar 

  9. Bujari, A., Marin, A., Palazzi, C.E., Rossi, S.: Analysis of ECN/RED and SAP-LAW with simultaneous TCP and UDP traffic. Comput. Netw. 108, 160–170 (2016)

    Article  Google Scholar 

  10. Coutinho, R.W.L., Boukerche, A., Vieira, L.F.M., Loureiro, A.A.F.: Design guidelines for opportunistic routing in underwater networks. IEEE Commun. Mag. 54(2), 40–48 (2016)

    Article  Google Scholar 

  11. de Souza, F.A., Chang, B.S., Brante, G.: Optimizing the number of hops and retransmissions for energy efficient multi-hop underwater acoustic communications. IEEE Sens. 16, 3927–3938 (2016)

    Article  Google Scholar 

  12. Erdem, H.D., Gungor, V.C.: Lifetime analysis of energy harvesting underwater wireless sensor nodes. In: 25th Signal Processing and Communications Applications Conference, SIU 2017, Antalya, Turkey, 15–18 May 2017, pp. 1–4 (2017)

    Google Scholar 

  13. Gelenbe, E., Marin, A.: Interconnected wireless sensors with energy harvesting. In: Gribaudo, M., Manini, D., Remke, A. (eds.) ASMTA 2015. LNCS, vol. 9081, pp. 87–99. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18579-8_7

    Chapter  Google Scholar 

  14. Harris III, A.F., Zorzi, M.: Modeling the underwater acoustic channel in ns2. In: Proceedings of the 2nd International Conference on Performance Evaluation Methodologies and Tools, ValueTools, pp. 18–26 (2007)

    Google Scholar 

  15. Jhaveri, R.H., Patel, N.M.: Mobile ad-hoc networking with AODV: a review. Int. J. Next-Gener. Comput. 6(3), 165–191 (2015)

    Google Scholar 

  16. Marinakis, D., Wu, K., Ye, N., Whitesides, S.: Network optimization for lightweight stochastic scheduling in underwater sensor networks. IEEE Trans. Wirel. Commun. 11(8), 2786–2795 (2012)

    Google Scholar 

  17. Noh, Y., Lee, U., Lee, S., Wang, P., Vieira, L.F.M., Cui, J.-H., Gerla, M., Kim, K.: Hydrocast: pressure routing for underwater sensor networks. IEEE Trans. Veh. Technol. 65(1), 333–347 (2016)

    Article  Google Scholar 

  18. Nzouonta, J., Ott, T., Borcea, C.: Impact of queuing discipline on packet delivery latency in ad hoc networks. Perform. Eval. 66(12), 667–684 (2009)

    Article  Google Scholar 

  19. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  20. Parrish, N., Tracy, L., Roy, S., Arabshahi, P., Fox, W.L.J.: System design considerations for undersea networks: link and multiple access protocols. IEEE J. Sel. Areas Commun. 26(9), 1720–1730 (2008)

    Article  Google Scholar 

  21. Pignieri, F., De Rango, F., Veltri, F., Marano, S.: Markovian approach to model underwater acoustic channel: techniques comparison. In: Military Communications Conference, 2008, MILCOM 2008, pp. 1–7. IEEE (2008)

    Google Scholar 

  22. Srujana, B.S., Neha, Mathews, P., Harigovindan, V.P.: Multi-source energy harvesting system for underwater wireless sensor networks. Procedia Comput. Sci. 46(Supplement C), 1041–1048 (2015). Proceedings of the International Conference on Information and Communication Technologies

    Article  Google Scholar 

  23. Urick, R.: Principles of Underwater Sound. McGraw-Hill, New York (1983)

    Google Scholar 

  24. Yan, H., Shi, Z.J., Cui, J.-H.: DBR: depth-based routing for underwater sensor networks. In: Das, A., Pung, H.K., Lee, F.B.S., Wong, L.W.C. (eds.) NETWORKING 2008. LNCS, vol. 4982, pp. 72–86. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79549-0_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Marin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balsamo, S., Fiems, D., Jafri, M., Marin, A. (2018). Analysis of Performance in Depth Based Routing for Underwater Wireless Sensor Networks. In: Balsamo, S., Marin, A., Vicario, E. (eds) New Frontiers in Quantitative Methods in Informatics. InfQ 2017. Communications in Computer and Information Science, vol 825. Springer, Cham. https://doi.org/10.1007/978-3-319-91632-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91632-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91631-6

  • Online ISBN: 978-3-319-91632-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics