Skip to main content

Self-Organization and Complex Networks

  • Chapter
  • First Online:
Adaptive Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In this chapter we discuss how the results developed within the theory of fractals and Self-Organized Criticality (SOC) can be fruitfully exploited as ingredients of adaptive network models. In order to maintain the presentation self-contained, we first review the basic ideas behind fractal theory and SOC. We then briefly review some results in the field of complex networks, and some of the models that have been proposed. Finally, we present a self-organized model recently proposed by Garlaschelli et al. (Nat. Phys. 3: 813, 2007) that couples the fitness network model defined by Caldarelli et al. (Phys. Rev. Lett. 89: 258702, 2002) with the evolution model proposed by Bak and Sneppen (Phys. Rev. Lett. 71: 4083, 1993) as a prototype of SOC. Remarkably, we show that the results obtained for the two models separately change dramatically when they are coupled together. This indicates that self-organized networks may represent an entirely novel class of complex systems, whose properties cannot be straightforwardly understood in terms of what we have learnt so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Caldarelli G., Scale-Free Networks, Oxford University Press, Oxford (2007).

    MATH  Google Scholar 

  2. Caldarelli G., Vespignani A. (eds), Large Scale Structure and Dynamics of Complex Networks (World Scientific Press, Singapore 2007).

    MATH  Google Scholar 

  3. Dorogovtsev S.N., Mendes J.F.F., Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford University Press, Oxford (2003).

    MATH  Google Scholar 

  4. Newman M.E.J., SIAM Rev. 45, 167 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  5. Albert R., Barabási A.-L., Rev. Mod. Phys., 74, 47–97 (2001).

    Article  Google Scholar 

  6. Garlaschelli D., Capocci A., Caldarelli G., Nature Phys., 3 813–817 (2007).

    Article  Google Scholar 

  7. Caldarelli G., Capocci A., De Los Rios P., Muñoz M. A., Phys. Rev. Lett., 89, (2002) 258702.

    Article  Google Scholar 

  8. Bak P., Sneppen K., Phys. Rev. Lett., 71, 4083–4086 (1993).

    Article  Google Scholar 

  9. Mandelbrot B.B., The variation of certain speculative prices. J. Business 36 394–419, (1963).

    Article  Google Scholar 

  10. Mandelbrot B.B., How long is the coast of britain? statistical self-similarity and fractional dimension. Science 156, 636–638 (1967).

    Article  Google Scholar 

  11. Niemeyer L., Pietronero L., Wiesmann H.J., Fractal dimension of dielectric breakdown, Phys. Rev. Lett. 52, 1033 (1984)

    Article  MathSciNet  Google Scholar 

  12. Rodriguez-Iturbe, I., Rinaldo A., Fractal River Networks: Chance and Self-Organization, Cambridge University Press, New York (1997).

    Google Scholar 

  13. Brady R.M., Ball, R.C., Fractal growth of Copper electrodeposits Nature 309, 225 (1984).

    Google Scholar 

  14. Batty M., Longley P.A., Fractal Cities: a Geometry of Form and Functions, Academic Press, San Diego (1994)

    Google Scholar 

  15. Mandelbrot B.B., Passoja D.E., Paullay A.J., Fractal character of fracture surface in metals, Nature 308, 721 (1984).

    Article  Google Scholar 

  16. Brown J.H., West G.B. (eds.), Scaling in Biology Oxford University Press Oxford (2000).

    Google Scholar 

  17. Sierpiński W., Sur une courbe dont tout point est un point de ramification, C. R. Acad. Sci. Paris 160, 302–305 (1915).

    MATH  Google Scholar 

  18. Eldredge N., Gould S.J., Punctuated equilibria: an alternative to phyletic gradualism, In T.J.M. Schopf, ed., Models in Paleobiology. Freeman Cooper, San Francisco pp. 82–115 (1972). Reprinted in N. Eldredge Time frames. Princeton University Press (1985) Princeton.

    Google Scholar 

  19. Jensen H. J., Self-Organized Criticality Cambridge University Press, Cambridge (1998).

    Google Scholar 

  20. Rigon R., Rodríguez-Iturbe I., Rinaldo A., Feasible optimality implies Hack’s law, Water Res. Res., 34, 3181–3190 (1998).

    Article  Google Scholar 

  21. Marani M., Maritan A., Caldarelli G., Banavar J.A., Rinaldo A., Stationary self-organized fractal structures in potential force fields, J. Phys. A 31, 337–343 (1998).

    Article  MathSciNet  Google Scholar 

  22. Caylor K.K., Scanlon T.M. Rodríguez-Iturbe I., Feasible optimality of vegetation patterns in river basins, Geoph. Res. Lett., 31, L13502 (2004).

    Google Scholar 

  23. Ferrer i Cancho R. and Solé R.V., Optimisation in complex networks, Lect. Notes Phys., 625, 114-126, (2003)

    Google Scholar 

  24. Caldarelli G., Maritan A., Vendruscolo M., Hot sandpiles, Europhys. Lett. 35 481–486 (1996).

    Google Scholar 

  25. Caldarelli G., Mean Field Theory for Ordinary and Hot sandpiles, Physica A, 252, 295–307 (1998).

    Article  Google Scholar 

  26. Bak P., Tang C., Weisenfeld K., Phys. Rev. Lett. 59, 381 (1987).

    Article  Google Scholar 

  27. Wilkinson D. Willemsen J.F., Invasion Percolation: A new form of Percolation Theory, J. Phys. A 16, 3365–3376 (1983).

    Article  MathSciNet  Google Scholar 

  28. Flyvbjerg H., Sneppen K., Bak P., Phys. Rev. Lett. 71, 4087 (1993).

    Article  Google Scholar 

  29. Grassberger P., Phys. Lett. A 200, 277 (1995).

    Article  Google Scholar 

  30. Dickman R., Muñnoz M.A., Vespignani A., Zapperi S., Braz. J. Phys. 30, 27 (2000).

    Google Scholar 

  31. Benton M.J., The Fossil Record 2, Chapman and Hall, London. (1993).

    Google Scholar 

  32. De Los Rios P., Marsili M., Vendruscolo M., Phys. Rev. Lett. 80, 5746 (1998).

    Article  Google Scholar 

  33. Dorogovtsev S.N., Mendes J.F.F., Pogorelov Y.G., Phys. Rev. E 62, 295 (2000).

    Article  Google Scholar 

  34. Marsili M., Europhys. Lett. 28, 385 (1994).

    Google Scholar 

  35. Mikeska B., Phys. Rev. E 55, 3708 (1997).

    Article  Google Scholar 

  36. Paczuski M., Maslov S., Bak P., Europhys. Lett. 27, 97 (1994).

    Google Scholar 

  37. Caldarelli G., Felici M., Gabrielli A., Pietronero L., Phys. Rev. E 65 046101 (2002).

    Article  Google Scholar 

  38. Felici M., Caldarelli G., Gabrielli A., Pietronero L., Phys. Rev. Lett., 86, 1896–1899 (2001).

    Article  Google Scholar 

  39. De Los Rios, P., Marsili M., Vendruscolo, M., Phys. Rev. Lett., 80, 5746–5749 (1998).

    Article  Google Scholar 

  40. Kulkarni R.V., Almaas E., Stroud D., Evolutionary dynamics in the Bak–Sneppen model on small–world networks. ArXiv:cond-mat/9905066.

    Google Scholar 

  41. Moreno Y., Vazquez A., The Bak–Sneppen model on scale–free networks. Europhys. Lett. 57(5), 765–771 (2002).

    Article  Google Scholar 

  42. Lee S., Kim Y., Coevolutionary dynamics on scale-free networks. Phys. Rev. E 71, 057102 (2005).

    Article  Google Scholar 

  43. Masuda N., Goh K.-I., Kahng B., Extremal dynamics on complex networks: Analytic solutions. Phys. Rev. E 72, 066106 (2005).

    Article  Google Scholar 

  44. Garcia G.J.M., Dickman R., Asymmetric dynamics and critical behavior in the Bak-Sneppen model, Physica A 342, 516–528 (2004).

    MathSciNet  Google Scholar 

  45. Middendorf M., Ziv E., Wiggins C.H., Inferring network mechanisms: The Drosophila melanogaster protein interaction network, Proc. Nat. Acad. Sci. 102, 3192–3197 (2005).

    Article  Google Scholar 

  46. Giot L et al., A protein interaction map of Drosophila melanogaster, Science 302 1727–1736 (2003).

    Article  Google Scholar 

  47. Jeong H., Tombor B., Albert R., Oltvai Z.N., Barabási A.-L., The large-scale organization of metabolic networks, Nature 407, 651 (2000).

    Article  Google Scholar 

  48. Caldarelli G., Higgs P.G., McKane A.J., J. Theor. Biol. 193, (1998) 345.

    Article  Google Scholar 

  49. Garlaschelli D., Caldarelli G. Pietronero L., Universal scaling relations in food webs, Nature 423, 165–168 (2003).

    Article  Google Scholar 

  50. Burlando B., J. Theor. Biol. 146 99–114 (1990).

    Article  Google Scholar 

  51. Burlando B., J. Theor. Biol. 163 161–172 (1993).

    Article  Google Scholar 

  52. Caretta Cartozo C., Garlaschelli D., Ricotta C., Barthélemy M., Caldarelli G.J., Phys. A: Math. Theor. 41, 224012 (2008).

    Article  Google Scholar 

  53. Garlaschelli D., Battiston S., Castri M., Servedio V.D.P., Caldarelli G., Phys. A 350, (2005) 491–499.

    Article  MathSciNet  Google Scholar 

  54. Garlaschelli D., Loffredo M.I., Phys. Rev. Lett. 93, (2004) 188701.

    Article  Google Scholar 

  55. Faloutsos M., Faloutsos P., Faloutsos C., On Power-law relationships of the Internet topology, Proc. ACM SIGCOMM, Comp. Comm. Rev., 29, 251–262 (1999).

    Article  Google Scholar 

  56. Adamic L.A.¡??¿ Huberman B.A, Power-law distribution of the World Wide Web, Science 287, 2115 (2000).

    Google Scholar 

  57. Caldarelli G., R. Marchetti R., and Pietronero L., Europhys. Lett. 52, 386 (2000).

    Article  Google Scholar 

  58. Pastor-Satorras R., Vespignani A., Phys. Rev. Lett. 86, 3200 (2001).

    Article  Google Scholar 

  59. Dorogovtsev S.N., Goltsev A.V., Menes J.F.F., Critical phenomena in complex networks, arXiv:0705.0010v6.

    Google Scholar 

  60. Garlaschelli D., Loffredo M.I., Physica A 338(1–2), 113–118 (2004).

    Article  Google Scholar 

  61. Garlaschelli D., Loffredo M.I., J. Phys. A: Math. Theor. 41, 224018 (2008).

    Article  MathSciNet  Google Scholar 

  62. Goh K.-I., Lee D.-S., Kahng B., Kim D., Phys. Rev. Lett. 91, 148701 (2003).

    Article  Google Scholar 

  63. Barabási A.-L., Albert R. Emergence of scaling in random networks, Science 286, 509–512 (1999).

    Article  MathSciNet  Google Scholar 

  64. Fronczak A., Fronczak P., Holyst J.A., Mean-Field theory for clustering coefficient in Barabáasi-Albert networks, Phys. Rev. E, 68, 046126 (2003).

    Article  Google Scholar 

  65. Barrat A., Pastor-Satorras R., Rate equation approach for correlations in growing network models, Phys. Rev. E, 71, 036127 (2005).

    Article  Google Scholar 

  66. Bollobás B., Riordan O., The diameter of a scale-free random graph, Combinatorica, 24, 5–34 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  67. Boguñá M., Pastor-Satorras R., Phys. Rev. E 68, 036112 (2003).

    Article  Google Scholar 

  68. Servedio V.D.P., Caldarelli G., Buttà P., Phys. Rev. E 70 056126 (2004).

    Article  Google Scholar 

  69. Park J., Newman M.E.J., Phys. Rev. E 68, 026112 (2003).

    Article  Google Scholar 

  70. Garlaschelli D., Loffredo M.I., Phys. Rev. E 78, 015101(R) (2008).

    Article  MathSciNet  Google Scholar 

  71. Maslov S., Sneppen K., Zaliznyak A., Physica A 333, (2004) 529.

    Article  Google Scholar 

  72. Garlaschelli D., Ahnert S.E., Fink T.M.A., Caldarelli G., ArXiv:cond-mat/0606805v1.

    Google Scholar 

  73. Jain, S., Krishna, S. Autocatalytic Sets and the Growth of Complexity in an Evolutionary Model. Phys. Rev. Lett. 81, 5684–5687 (1998).

    Article  Google Scholar 

  74. Rohlf T., Bornholdt S., This issue.

    Google Scholar 

  75. Paczuski M., ArXiv:physics/0502028v1.

    Google Scholar 

  76. Bianconi G., Marsili M., Clogging and self–organized criticality in complex networks. Phys. Rev. E 70, 035105(R) (2004).

    Article  Google Scholar 

  77. Fronczak P., Fronczak A. Holyst J.A. Self–organized criticality and coevolution of network structure and dynamics. Phys. Rev. E 73, 046117 (2006).

    Article  MathSciNet  Google Scholar 

  78. Zanette D.H., Gil, S. Opinion spreading and agent segregation on evolving networks. Physica D 224(1–2), 156–165 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  79. Santos F.C., Pacheco J.M. Lenaerts T., Cooperation prevails when individuals adjust their social ties. PLoS Comput. Biol. 2(10), e140 (2006).

    Article  Google Scholar 

  80. Kozma B., Barrat A., Phys. Rev. E 77, 016102 (2008).

    Article  Google Scholar 

  81. Balcan D. Erzan A., Content-based networks: A pedagogical overview. CHAOS 17, 026108 (2007).

    Article  MathSciNet  Google Scholar 

  82. Caldarelli G., Capocci A., Garlaschelli D., A Self–organized model for network evolution. Eur. Phys. J. B 64, 585-591 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Caldarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caldarelli, G., Garlaschelli, D. (2009). Self-Organization and Complex Networks. In: Gross, T., Sayama, H. (eds) Adaptive Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01284-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01284-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01283-9

  • Online ISBN: 978-3-642-01284-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics