Skip to main content

Nano-Contact Spin-Torque Oscillators as Magnonic Building Blocks

  • Chapter
  • First Online:
Book cover Magnonics

Part of the book series: Topics in Applied Physics ((TAP,volume 125))

Abstract

We describe the possibility of using nano-contact spin-torque oscillators (NC-STOs) as fundamental magnonic building blocks. NC-STOs can act as spin wave generators, manipulators, and detectors, and can hence realize all the fundamental functions necessary for fully integrated magnonic devices, which can be fabricated using available CMOS compatible large-scale spin-torque device production processes. We show in particular how a 200 nm sized nano-contact located on an out-of-plane magnetized permalloy “free” magnetic layer can generate spin waves at f≈15 GHz that propagate up to 4 μm away from the nano-contact with wavelength λ=200–300 nm, decay length λ r ≈2 μm and group velocities v g ≈3 μm/ns. We propose that the same type of NC-STOs can be used as spin wave manipulators, via control of the local Gilbert damping, and as spin wave detector using the spin torque diode effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, the magnetization angle is the critical parameter. However, since the magnetization angle is a monotonic function of the applied field (at saturation), and since it is easier to experimentally measure the applied field angle, we will refer to the critical field angle.

References

  1. V.V. Kruglyak, S.O. Demokritov, D. Grundler, Magnonics. J. Phys. D, Appl. Phys. 43(26), 260301 (2010)

    Article  Google Scholar 

  2. F. Bloch, Zur theorie des ferromagnetismus. Z. Phys. 61(3–4), 206–219 (1930)

    Article  Google Scholar 

  3. S. Neusser, D. Grundler, Magnonics: spin waves on the nanoscale. Adv. Mater. 21, 2927–2932 (2009)

    Article  Google Scholar 

  4. S.A. Nikitov, P. Tailhades, C.S. Tsai, Spin waves in periodic magnetic structures–magnonic crystals. J. Magn. Magn. Mater. 236(3), 320–330 (2001)

    Article  Google Scholar 

  5. Y.K. Fetisov, C.E. Patton, Microwave bistability in a magnetostatic wave interferometer with external feedback. IEEE Trans. Magn. 35(2), 1024–1036 (1999)

    Article  Google Scholar 

  6. S. Tacchi, M. Madami, G. Gubbiotti, G. Carlotti, A.O. Adeyeye, S. Neusser, B. Botters, D. Grundler, Magnetic normal modes in squared antidot array with circular holes: a combined Brillouin light scattering and broadband ferromagnetic resonance study. IEEE Trans. Magn. 46(2), 172–178 (2010)

    Article  Google Scholar 

  7. M.J. Pechan, C. Yu, R.L. Compton, J.P. Park, P.A. Crowell, Direct measurement of spatially localized ferromagnetic-resonance modes in an antidot lattice (invited). J. Appl. Phys. 97(10), 10J903 (2005)

    Article  Google Scholar 

  8. J. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159(1–2), L1–L7 (1996)

    Article  Google Scholar 

  9. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54(13), 9353–9358 (1996)

    Article  Google Scholar 

  10. M. Tsoi, A.G.M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, P. Wyder, Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80(19), 4281–4284 (1998)

    Article  Google Scholar 

  11. M. Tsoi, A.G. Jansen, J. Bass, W.C. Chiang, V. Tsoi, P. Wyder, Generation and detection of phase-coherent current-driven magnons in magnetic multilayers. Nature 406(6791), 46–48 (2000)

    Article  Google Scholar 

  12. W. Rippard, M. Pufall, S. Kaka, S. Russek, T. Silva, Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92(2), 027201 (2004)

    Article  Google Scholar 

  13. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425(6956), 380–383 (2003)

    Article  Google Scholar 

  14. F.B. Mancoff, N.D. Rizzo, B.N. Engel, S. Tehrani, Phase-locking in double-point-contact spin-transfer devices. Nature 437(7057), 393–395 (2005)

    Article  Google Scholar 

  15. S. Bonetti, Magnetization dynamics in nano-contact spin torque oscillators. Ph.D. thesis, Kungliga Tekniska Högskolan, The Royal Institute of Technology, Stockholm, Sweden (2010)

    Google Scholar 

  16. J. Slonczewski, Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195(2), 261–268 (1999)

    Article  Google Scholar 

  17. W.H. Rippard, M.R. Pufall, T.J. Silva, Quantitative studies of spin-momentum-transfer-induced excitations in co/cu multilayer films using point-contact spectroscopy. Appl. Phys. Lett. 82(8), 1260–1262 (2003)

    Article  Google Scholar 

  18. A. Slavin, V. Tiberkevich, Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95(23), 237201 (2005)

    Article  Google Scholar 

  19. D. Berkov, N. Gorn, Magnetization oscillations induced by a spin-polarized current in a point-contact geometry: mode hopping and nonlinear damping effects. Phys. Rev. B 76(14), 144414 (2007)

    Article  Google Scholar 

  20. D. Berkov, J. Miltat, Spin-torque driven magnetization dynamics: micromagnetic modeling. J. Magn. Magn. Mater. 320(7), 1238–1259 (2008)

    Article  Google Scholar 

  21. G. Consolo, B. Azzerboni, L. Lopez-Diaz, G. Gerhart, E. Bankowski, V. Tiberkevich, A. Slavin, Micromagnetic study of the above-threshold generation regime in a spin-torque oscillator based on a magnetic nanocontact magnetized at an arbitrary angle. Phys. Rev. B 78(1), 014420 (2008)

    Article  Google Scholar 

  22. G. Consolo, B. Azzerboni, G. Gerhart, G. Melkov, V. Tiberkevich, A. Slavin, Excitation of self-localized spin-wave bullets by spin-polarized current in in-plane magnetized magnetic nanocontacts: a micromagnetic study. Phys. Rev. B 76(14), 144410 (2007)

    Article  Google Scholar 

  23. W. Rippard, M. Pufall, S. Kaka, T. Silva, S. Russek, Current-driven microwave dynamics in magnetic point contacts as a function of applied field angle. Phys. Rev. B 70(10), 100406(R) (2004)

    Article  Google Scholar 

  24. S. Bonetti, V. Tiberkevich, G. Consolo, G. Finocchio, P. Muduli, F. Mancoff, A. Slavin, J. Åkerman, Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. Phys. Rev. Lett. 105(21), 1–4 (2010)

    Article  Google Scholar 

  25. G. Gerhart, E. Bankowski, G. Melkov, V. Tiberkevich, A. Slavin, Angular dependence of the microwave-generation threshold in a nanoscale spin-torque oscillator. Phys. Rev. B 76(2), 024437 (2007)

    Article  Google Scholar 

  26. V.E. Demidov, S. Urazhdin, S.O. Demokritov, Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nat. Mater. 9(12), 984–988 (2010)

    Article  Google Scholar 

  27. M. Madami, S. Bonetti, G. Consolo, S. Tacchi, G. Carlotti, G. Gubbiotti, F.B. Mancoff, M.A. Yar, J. Åkerman, Direct observation of a propagating spin wave induced by spin-transfer torque. Nat. Nanotechnol. 6, 635–638 (2011)

    Article  Google Scholar 

  28. V.E. Demidov, S.O. Demokritov, B. Hillebrands, M. Laufenberg, P.P. Freitas, Radiation of spin waves by a single micrometer-sized magnetic element. Appl. Phys. Lett. 85(14), 2866–2868 (2004)

    Article  Google Scholar 

  29. T. Neumann, T. Schneider, A.A. Serga, B. Hillebrands, An electro-optic modulator-assisted wavevector-resolving Brillouin light scattering setup. Rev. Sci. Instrum. 80(5), 053905 (2009)

    Article  Google Scholar 

  30. V.E. Demidov, S.O. Demokritov, K. Rott, P. Krzysteczko, G. Reiss, Self-focusing of spin waves in permalloy microstripes. Appl. Phys. Lett. 91(25), 252504 (2007)

    Article  Google Scholar 

  31. S. Bonetti, P. Muduli, F. Mancoff, J. Åkerman, Spin torque oscillator frequency versus magnetic field angle: the prospect of operation beyond 65 GHz. Appl. Phys. Lett. 94(10), 102507 (2009)

    Article  Google Scholar 

  32. M.A. Hoefer, M.J. Ablowitz, B. Ilan, M.R. Pufall, T.J. Silva, Theory of magnetodynamics induced by spin torque in perpendicularly magnetized thin films. Phys. Rev. Lett. 95(26), 267206 (2005)

    Article  Google Scholar 

  33. W.H. Rippard, A.M. Deac, M.R. Pufall, J.M. Shaw, M.W. Keller, S.E. Russek, C. Serpico, Spin-transfer dynamics in spin valves with out-of-plane magnetized CoNi free layers. Phys. Rev. B 81(1), 014426 (2010)

    Article  Google Scholar 

  34. S.M. Mohseni, S.R. Sani, J. Persson, T.N. Anh Nguyen, S. Chung, Y. Pogoryelov, J. Åkerman, High frequency operation of a spin-torque oscillator at low field. Phys. Status Solidi (RRL) – Rapid Res. Lett. 5(12), 432–434 (2011)

    Article  Google Scholar 

  35. S. Mizukami, F. Wu, A. Sakuma, J. Walowski, D. Watanabe, T. Kubota, X. Zhang, H. Naganuma, M. Oogane, Y. Ando, T. Miyazaki, Long-lived ultrafast spin precession in manganese alloys films with a large perpendicular magnetic anisotropy. Phys. Rev. Lett. 106(11), 1–4 (2011)

    Article  Google Scholar 

  36. S. Kaka, M.R. Pufall, W.H. Rippard, T.J. Silva, S.E. Russek, J.A. Katine, Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437(7057), 389–392 (2005)

    Article  Google Scholar 

  37. M. Pufall, W. Rippard, S. Russek, S. Kaka, J. Katine, Electrical measurement of spin-wave interactions of proximate spin transfer nanooscillators. Phys. Rev. Lett. 97(8), 087206 (2006)

    Article  Google Scholar 

  38. P.K. Muduli, Y. Pogoryelov, S. Bonetti, G. Consolo, F. Mancoff, J. Åkerman, Nonlinear frequency and amplitude modulation of a nanocontact-based spin-torque oscillator. Phys. Rev. B 81(14), 140408(R) (2010)

    Article  Google Scholar 

  39. M.R. Pufall, W.H. Rippard, S. Kaka, T.J. Silva, S.E. Russek, Frequency modulation of spin-transfer oscillators. Appl. Phys. Lett. 86(8), 082506 (2005)

    Article  Google Scholar 

  40. P.K. Muduli, Y. Pogoryelov, Y. Zhou, F. Mancoff, Spin torque oscillators and RF currents modulation, locking, and ringing. Integr. Ferroelectr. 125, 37–41 (2011)

    Article  Google Scholar 

  41. P.K. Muduli, Y. Pogoryelov, F. Mancoff, J. Akerman, Modulation of individual and mutually synchronized nanocontact-based spin torque oscillators. IEEE Trans. Magn. 47(6), 1575–1579 (2011)

    Article  Google Scholar 

  42. Y. Pogoryelov, P.K. Muduli, S. Bonetti, E. Iacocca, F. Mancoff, J. Åkerman, Frequency modulation of spin torque oscillator pairs. Appl. Phys. Lett. 98(19), 192501 (2011)

    Article  Google Scholar 

  43. Y. Pogoryelov, P.K. Muduli, S. Bonetti, F. Mancoff, J. Åkerman, Spin-torque oscillator linewidth narrowing under current modulation. Appl. Phys. Lett. 98(19), 192506 (2011)

    Article  Google Scholar 

  44. F.B. Mancoff, N.D. Rizzo, B.N. Engel, S. Tehrani, Area dependence of high-frequency spin-transfer resonance in giant magnetoresistance contacts up to 300 nm diameter. Appl. Phys. Lett. 88(11), 112507 (2006)

    Article  Google Scholar 

  45. M.P. Kostylev, A.A. Serga, T. Schneider, T. Neumann, B. Leven, B. Hillebrands, R.L. Stamps, Resonant and nonresonant scattering of dipole-dominated spin waves from a region of inhomogeneous magnetic field in a ferromagnetic film. Phys. Rev. B 76, 184419 (2007)

    Article  Google Scholar 

  46. V. Tiberkevich, A. Slavin, J.-V. Kim, Microwave power generated by a spin-torque oscillator in the presence of noise. Appl. Phys. Lett. 91(19), 192506 (2007)

    Article  Google Scholar 

  47. F. Maci, A.D. Kent, F.C. Hoppensteadt, Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology 22, 095301 (2011)

    Article  Google Scholar 

  48. A.A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D.D. Djayaprawira, N. Watanabe, S. Yuasa, Spin-torque diode effect in magnetic tunnel junctions. Nature 438(7066), 339–342 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

Support from the Swedish Foundation for Strategic Research (SSF), the Swedish Research Council (VR) and the Knut and Alice Wallenberg Foundation is gratefully acknowledged. Stefano Bonetti is a Postdoctoral Fellow supported by a grant from the Swedish Research Council (VR) and the Knut and Alice Wallenberg Foundation. Johan Åkerman is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation. We thank M. Madami, G. Consolo, S. Tacchi, G. Carlotti, G. Gubbiotti, F.B. Mancoff, V. Tiberkevich, and A. Slavin for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Åkerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonetti, S., Åkerman, J. (2013). Nano-Contact Spin-Torque Oscillators as Magnonic Building Blocks. In: Demokritov, S., Slavin, A. (eds) Magnonics. Topics in Applied Physics, vol 125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30247-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30247-3_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30246-6

  • Online ISBN: 978-3-642-30247-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics