Skip to main content

Acetic Acid Bacteria as Symbionts of Insects

  • Chapter
  • First Online:

Abstract

Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

Expertise: Ecology of insect–microbe symbiosis (Crotti E., Chouaia B., Alma A., Daffonchio D.), Tropical diseases, Symbiosis and symbiont-based control strategies (Favia G.), Molecular biology of symbiosis in insects (Bandi C.), Insect genetics, Symbiosis and applications (Bourtzis K.)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aksoy S, Rio RV (2005) Interactions among multiple genomes: tsetse, its symbionts and trypanosomes. Insect Biochem Mol Biol 35:691–698. (Erratum in: Insect Biochem Mol Biol 2008;38:1033)

    Article  CAS  PubMed  Google Scholar 

  • Babendreier D, Joller D, Romeis J et al (2007) Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol 59:600–610

    Article  CAS  PubMed  Google Scholar 

  • Bae S, Fleet GH, Heard GM (2006) Lactic acid bacteria associated with wine grapes from several Australian vineyards. J Appl Microbiol 100:712–727

    Article  CAS  PubMed  Google Scholar 

  • Barak JD, Jahn CE, Gibson DL, Charkowsky AO (2007) The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Mol Plant Microbe Interact 20:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Bari W, Song YJ, Yoon SS (2011) Suppressed induction of proinflammatory cytokines by a unique metabolite produced by Vibrio cholerae O1 El Tor biotype in cultured host cells. Infect Immun 79:3149–3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beard CB, Dotson EM, Pennington PM et al (2001) Bacterial symbiosis and paratransgenic control of vector-borne Chagas disease. Int J Parasitol 31:621–627

    Article  CAS  PubMed  Google Scholar 

  • Behar A, Yuval B, Jurkevitch E (2005) Enterobacteria-mediated nitrogen fixation in natural population of the fruit fly Ceratitis capitata. Mol Ecol 14:2637–2643

    Article  CAS  PubMed  Google Scholar 

  • Bertalan M, Albano R, de Pádua V et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450

    Article  PubMed  PubMed Central  Google Scholar 

  • Blum JE, Fischer CN, Miles J, Handelsman J (2013) Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. mBio 4:e00860-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosch TC, McFall-Ngai MJ (2011) Metaorganisms as the new frontier. Zoology (Jena) 114:185–190

    Article  Google Scholar 

  • Capone A, Ricci I, Damiani C et al (2013) Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implication in malaria symbiotic control. Parasit Vectors 6:182–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Cariveau DP, Elijah Powell J, Koch H et al (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J 8:2369–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler JA, Lang JM, Bhatnagar S et al (2011) Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet 7:e1002272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler JA, Eisen JA, Kopp A (2012) Yeast communities of diverse Drosophila species: comparison of two symbiont groups in the same hosts. Appl Environ Microbiol 78:7327–7336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler JA, Jospin G, Lang JM (2014) Bacterial communities of Drosophila suzukii collected from live cherries. Peer J 2:e474

    Article  PubMed  PubMed Central  Google Scholar 

  • Chouaia B, Rossi P, Montagna M et al (2010) Typing of Asaia spp. bacterial symbionts in four mosquito species: molecular evidence for multiple infections. Appl Environ Microbiol 76:7444–7450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouaia B, Rossi P, Epis S et al (2012) Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol 12:S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouaia B, Gaiarsa S, Crotti E et al (2014) Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts. Genome Biol Evol 6:912–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox C, Gilmore M (2007) Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun 75:1565–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox-Foster DL, Conlan S, Holmes EC et al (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287

    Article  CAS  PubMed  Google Scholar 

  • Crotti E, Damiani C, Pajoro M et al (2009) Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically-distant genera and orders. Environ Microbiol 11:3252–3264

    Article  CAS  PubMed  Google Scholar 

  • Crotti E, Rizzi A, Chouaia B et al (2010) Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 76:6963–6970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crotti E, Balloi A, Hamdi C et al (2012) Microbial symbionts: a resource for the management of insect-related problems. Microb Biotechnol 5:307–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Crotti E, Sansonno L, Prosdocimi EM et al (2013) Microbial symbionts of honeybees: a promising tool to improve honeybee health. New Biotechnol 30:716–722

    Article  CAS  Google Scholar 

  • Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465

    Article  CAS  PubMed  Google Scholar 

  • Damiani C, Ricci I, Crotti E et al (2008) Paternal transmission of symbiotic bacteria in malaria vectors. Curr Biol 18:R1087–R1088

    Article  CAS  PubMed  Google Scholar 

  • Damiani C, Ricci I, Crotti E et al (2010) Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb Ecol 60:644–654

    Article  PubMed  Google Scholar 

  • De Freece C, Damiani C, Valzano M et al (2014) Detection and isolation of the α-proteobacterium Asaia in Culex mosquitoes. Med Vet Entomol 28:438–442

    Article  PubMed  Google Scholar 

  • Dillon RJ, Dillon VM (2004) The gut bacteria of insects: non-pathogenic interactions. Annu Rev Entomol 49:71–92

    Article  CAS  PubMed  Google Scholar 

  • Dong YH, Taylor E, Dimopoulos G (2006) AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 4:1137–1146

    Article  CAS  Google Scholar 

  • Durvasula RV, Gumbs A, Panackal A et al (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA 94:3274–3278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta D, Gachhui R (2006) Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 56:1899–1903

    Article  CAS  PubMed  Google Scholar 

  • Dutta D, Gachhui R (2007) Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 57:353–357

    Article  CAS  PubMed  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects: diversity in structure and function. FEMS Microbiol Rev 37:699–735

    Article  CAS  PubMed  Google Scholar 

  • Epis S, Gaibani P, Ulissi U et al (2012) Do mosquito-associated bacteria of the genus Asaia circulate in humans? Eur J Clin Microbiol Infect Dis 31:1137–1140

    Article  CAS  PubMed  Google Scholar 

  • Evans JD, Lopez DL (2004) Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J Econ Entomol 97:752–756

    Article  CAS  PubMed  Google Scholar 

  • Favia G, Ricci I, Damiani C et al (2007) Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA 104:9047–9051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldhaar H, Gross R (2009) Insects as hosts for mutualistic bacteria. Int J Med Microbiol 299:1–8

    Article  PubMed  Google Scholar 

  • Fuentes-Ramírez LE, Bustillos-Cristales R, Tapia-Hernandez A et al (2001) Novel nitrogen fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51:1305–1314

    Article  PubMed  Google Scholar 

  • Fukatsu T (2012) Next-generation sequencing sheds light on intricate regulation of insect gut microbiota. Mol Ecol 21:5908–5910

    Article  CAS  PubMed  Google Scholar 

  • Gilliam M (1997) Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiol Lett 155:1

    Article  CAS  Google Scholar 

  • Gonella E, Crotti E, Rizzi A et al (2012) Horizontal transmission of the symbiotic bacterium Asaia sp. in the leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). BMC Microbiol 18:S4

    Article  Google Scholar 

  • Gross R, Vavre F, Heddi A et al (2009) Immunity and symbiosis. Mol Microbiol 73:751–759

    Article  CAS  PubMed  Google Scholar 

  • Hamdi C, Balloi A, Essanaa J et al (2011) Gut microbiome dysbiosis and honey bee health. J Appl Entomol 135:524–533

    Article  Google Scholar 

  • Hurwitz I, Fieck A, Read A et al (2011) Paratransgenic control of vector borne diseases. Int J Biol Sci 7:1334–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadin J, Vincke IH, Dunjic A et al (1966) Role of Pseudomonas in the sporogenesis of the hematozoon of malaria in the mosquito. Bull Soc Pathol Exot Filiales 59:514–525

    CAS  PubMed  Google Scholar 

  • Kersters K, Lisdiyanti P, Komagata K, Swings J (2006) The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, vol 5, 3rd edn. Springer, New York, pp 163–200

    Chapter  Google Scholar 

  • Kim SH, Lee WJ (2014) Role of DUOX in gut inflammation: lessons from Drosophila model of gut–microbiota interactions. Front Cell Infect Microbiol 3:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Kounatidis I, Crotti E, Sapountzis P et al (2009) Acetobacter tropicalis is a major symbiont in the olive fruit fly (Bactroceraoleae). Appl Environ Microbiol 75:3281–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KA, Kim SH, Kim EK et al (2013) Bacterial-derived uracil as a modulator of mucosal immunity and gut–microbe homeostasis in Drosophila. Cell 153:797–781

    Article  CAS  PubMed  Google Scholar 

  • Li L, Praet J, Borremans W et al (2014) Bombella intestini gen. nov., sp. nov., a novel acetic acid bacterium isolated from bumble bee crop. Int J Syst Evol Microbiol pii:ijs.0.068049-0. doi:10.1099/ijs.0.068049-0

    Google Scholar 

  • Lindh JM, Borg-Karlsonb A-K, Faye I (2008) Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Trop 107:242–250

    Article  CAS  PubMed  Google Scholar 

  • Lisdiyanti P, Navarro RR, Uchimura T, Komagata K (2006) Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov. Int J Syst Evol Microbiol 6:2101–2111

    Article  Google Scholar 

  • Loganathan P, Nair S (2004) Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Mamlouk D, Gullo M (2013) Acetic acid bacteria: physiology and carbon sources oxidation. Indian J Microbiol 53:377–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez J, Longdon B, Bauer S et al (2014) Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PloS Pathog 10:e1004369

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20:619–628

    Article  PubMed  Google Scholar 

  • Marzorati M, Alma A, Sacchi L et al (2006) A novel Bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of flavescence dorée in Vitis vinifera. Appl Environ Microbiol 72:1467–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo E, Torija MJ, Mas A, Bartowsky EJ (2014) Acetic acid bacteria isolated from grapes of South Australian vineyards. Int J Food Microbiol 178:98–106

    Article  CAS  PubMed  Google Scholar 

  • McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA 104:19392–19397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller T (2011) Paratransgenesis as a potential tool for pest control: review of applied arthropod symbiosis. J Appl Entomol 135:474–478

    Article  Google Scholar 

  • Mitraka E, Stathopoulos S, Siden-Kiamos I et al (2013) Asaia accelerates larval development of Anopheles gambiae. Pathog Global Health 107:305–311

    Article  CAS  Google Scholar 

  • Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8:258–272

    Article  CAS  PubMed  Google Scholar 

  • Moll RM, Romoser WS, Modrzakowski MC et al (2001) Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J Med Entomol 38:29–32

    Article  CAS  PubMed  Google Scholar 

  • Moran NA (2006) Symbiosis. Curr Biol 16:R866–R871

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Bennet GM (2014) The tiniest tiny genomes. Annu Rev Microbiol 68:195–215

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Dunbar HE (2006) Sexual acquisition of beneficial symbionts in aphids. Proc Natl Acad Sci USA 103:12803–12806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray CJ, Rosenfeld LC, Lim SS et al (2012) Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379:413–431

    Article  PubMed  Google Scholar 

  • Muthukumarasamy R, Cleenwerck I, Revathi G et al (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28:277–286

    Article  CAS  PubMed  Google Scholar 

  • Nalepa CA, Bignell DE, Bandi C (2001) Detritivory, coprophagy and the evolution of digestive mutualisms in Dictyoptera. Insect Soc 48:194–201

    Article  Google Scholar 

  • Nardi JB, Mackie RI, Dawson JO (2002) Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? J Insect Physiol 48:751–763

    Article  CAS  PubMed  Google Scholar 

  • Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

    Article  CAS  PubMed  Google Scholar 

  • Pannebakker BA, Loppin B, Elemans CP et al (2007) Parasitic inhibition of cell death facilitates symbiosis. Proc Natl Acad Sci U S A 104:213–215

    Article  CAS  PubMed  Google Scholar 

  • Pumpuni CB, Demaio J, Kent M et al (1996) Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Trop Med Hyg 54:214–218

    CAS  PubMed  Google Scholar 

  • Raspor P, Goranovič D (2008) Biotechnological application of acetic acid bacteria. Crit Rev Biotechnol 28:101–124

    Article  CAS  PubMed  Google Scholar 

  • Ricci I, Valzano M, Ulissi U et al (2012) Symbiotic control of mosquito-borne disease. Pathog Global Health 106:380–385

    Article  Google Scholar 

  • Ridley EV, Wong AC-N, Westmiller S, Douglas AE (2012) Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE 7:e36765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rio RV, Symula RE, Wang J et al (2012) Insight into the transmission biology and species-specific functional capabilities of tsetse (Diptera: Glossinidae) obligate symbiont Wigglesworthia. MBio 3.pii: e00240-11

    Google Scholar 

  • Roh SW, Nam Y-D, Chang H-W et al (2008) Characterization of two novel commensal bacteria involved with innate immune homeostasis in Drosophila melanogaster. Appl Environ Microbiol 74:6171–6177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu JH, Kim SH, Lee HY et al (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319:777–782

    Article  CAS  PubMed  Google Scholar 

  • Sant’Anna MR, Diaz-Albiter H, Aguiar-Martins K et al (2014) Colonisation resistance in the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection. Parasit Vectors 7:329

    Article  PubMed  PubMed Central  Google Scholar 

  • Sassera D, Epis S, Pajoro M, Bandi C (2013) Microbial symbiosis and the control of vector- borne pathogens in tsetse flies, human lice, and triatomine bugs. Pathog Glob Health 107:285–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharon G, Segal D, Ringo JM et al (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci USA 107:20051–20056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SC, Kim SH, You H et al (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674

    Article  CAS  PubMed  Google Scholar 

  • Snyder AK, Deberry JW, Runyen-Janecky L, Rio RV (2010) Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc Biol Sci 277:2389–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staubach F, Baines JF, Künzel S, Bik EM, Petrov DA (2013) Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS ONE 8:e70749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toft C, Andersson SG (2010) Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet 11:465–475

    Article  CAS  PubMed  Google Scholar 

  • Tolasch T, Sölter S, Tóth M et al (2003) (R)-Acetoin-female sex pheromone of the summer chafer Amphimallon solstitiale (L.). J Chem Ecol 29:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature (Lond) 457:480–484

    Article  CAS  Google Scholar 

  • Valanne S, Rämet M (2013) Uracil debases pathogenic but not commensal bacteria. Cell Host Microbe 13:505–506

    Article  CAS  PubMed  Google Scholar 

  • Verstraete W (2007) Microbial ecology and environmental biotechnology. ISME J 1:1–4

    Article  Google Scholar 

  • Wang S, Jacobs-Lorena M (2013) Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol 31:185–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    Article  CAS  PubMed  Google Scholar 

  • White PB (1921) The normal bacterial flora of the bee. J Pathol Bacteriol 24:64–78

    Article  Google Scholar 

  • Wong A, Ng P, Douglas A (2011) Low diversity bacterial community in the gut of the fruit fly Drosophila melanogaster. Environ Microbiol 13:1889–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong A, Chaston J, Douglas A (2013) The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J 7:1922–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Butler S, Sanchez G, Mateos M (2014) Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity 112:399–408

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Hoshino K-I, Ishikawa T (1997) The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotechnol Biochem 61:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Zambelli P, Pinto A, Romano D et al (2012) One-pot chemoenzymatic synthesis of aldoximes from primary alcohols in water. Green Chem 14:2158–2161

    Article  CAS  Google Scholar 

  • Zouache K, Raharimalala FN, Raquin V et al (2011) Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol 75:377–389

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

E.C. acknowledges personal support from “Piano Sviluppo UNIMI: Linea B-Dotazione annuale per attività istituzionale” in the project “Acetic acid bacteria cell factories”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Daffonchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Crotti, E. et al. (2016). Acetic Acid Bacteria as Symbionts of Insects. In: Matsushita, K., Toyama, H., Tonouchi, N., Okamoto-Kainuma, A. (eds) Acetic Acid Bacteria. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55933-7_5

Download citation

Publish with us

Policies and ethics