Skip to main content

Biochemical and Functional Responses of Arabidopsis thaliana Exposed to Cadmium, Copper and Zinc

  • Chapter
  • First Online:

Part of the book series: Environmental Pollution ((EPOL,volume 21))

Abstract

Phytoremediation has been accepted advantageous over commonly used civil engineering remediation methods in costs, practice and the scale at which the processes operate. Understanding the metabolic answer and the adaptation of plants towards toxic metal exposure opens the way to future phytoremediation of contaminated sites. The majority of these metals get accumulated in plants and may either directly or indirectly find their way into the food chain causing severe secondary consequences. In particular, excess cadmium (Cd), copper (Cu) and zinc (Zn) are known to induce stress effects in all plant species. However, while Cu and Zn are normally present in different soils, and are part of or act as cofactors of many cell macromolecules, plants have no metabolic requirement for Cd. Arabidopsis thaliana L. is considered a model plant for many studies as its genomic sequence was completely identified and its mechanisms in genomic, transcriptomic and proteomic regulation are often similar to other plant species. The molecular, biochemical, physiological and morphological characteristics of this species are strongly affected by the exposure to Cd, Cu and Zn. The aim of this work is to give an up-to-date overview on the recent breakthroughs in the area of responses and adaptation of A. thaliana to Cd, Cu and Zn, three of the most common metals found in polluted soils, both alone and in combination. This chapter aims to contribute to a better understanding of the fundamental aspects of detoxification of metals and general responses in phytoremediation. The numerous and easily available genetic resources developed in A. thaliana should be extended to fast growing plant species of high biomass having significant tolerance to metals and suitable for phytoremediation purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Cd:

Cadmium

CKs:

Cytokinins

Cu:

Copper

GSH:

Reduced glutathione

IAA:

Indole-3-acetic acid

MTs:

Metallothioneins

PCS:

Phytochelatin synthase

PCs:

Phytochelatins

Zn:

Zinc

References

  • Abdel-Ghany SE, Muüller-Moulé P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233–1251

    Article  CAS  Google Scholar 

  • Ager FJ, Ynsa MD, Domínguez-Solís JR, Gotor C, Respaldiza MA, Romero LC (2002) Cadmium localization and quantification in the plant Arabidopsis thaliana using micro-PIXE. Nucl Instrum Method B 189:494–498

    Article  CAS  Google Scholar 

  • Ager FJ, Ynsa MD, Domínguez-Solís JR, López-Martín MC, Gotor C, Romero LC (2003) Nuclear micro-probe analysis of Arabidopsis thaliana leaves. Nucl Instrum Method B 210:401–406

    Article  CAS  Google Scholar 

  • Arteca RN, Arteca JM (2007) Heavy-metal-induced ethylene production in Arabidopsis thaliana. J Plant Physiol 164:1480–1488

    Article  CAS  Google Scholar 

  • Barroso C, Romero LC, Cejudo FJ, Vega JM, Gotor C (1999) Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol Biol 40:729–736

    Article  CAS  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L et al (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    Article  CAS  Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci U S A 96:6808–6813

    Article  CAS  Google Scholar 

  • Blum R, Meyer KC, Wünschmann J, Lendzian KJ, Grill E (2010) Cytosolic action of phytochelatin synthase. Plant Physiol 153:159–169

    Article  CAS  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  CAS  Google Scholar 

  • Cazalé A-C, Clemens S (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS Lett 507:215–219

    Article  Google Scholar 

  • Chen A, Komives EA, Schroeder JI (2006) An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol 141:108–120

    Article  CAS  Google Scholar 

  • Clauss MJ, Koch MA (2006) Poorly known relatives of Arabidopsis thaliana. Trends Plant Sci 11:449–459

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  Google Scholar 

  • Cobbett CS (2003a) Metallothioneins and phytochelatins; the sulfur-containing, metal-binding ligands of plants. In: Abrol YP, Ahmad A (eds) Sulphur in plants. Kluwer Academic Publishers, Dordrecht, pp 177–188

    Google Scholar 

  • Cobbett CS (2003b) Metals and plants. Model systems and hyper-accumulator species. New Phytol 159:289–293

    Article  Google Scholar 

  • Cobbett CS, Meagher RB (2002) Arabidopsis and the genetic potential for the phytoremediation of toxic elemental and organic pollutants. In: Somerville CR, Meyerowitz EM (eds) The arabidopsis book. American Society of Plant Biologists, Rockville, http://www.aspb.org/publications/arabidopsis/ - this publication is only available as an on-line text

    Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065

    Article  CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K et al (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  CAS  Google Scholar 

  • Desbrosses-Fonrouge A-G, Voigt K, Schröder A, Arrivault S, Thomine S, Krämer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579:4165–4174

    Article  CAS  Google Scholar 

  • Domínguez-Solís JR, Gutiérrez-Alcalá G, Romero LC, Gotor C (2001) The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 276:9297–9302

    Article  Google Scholar 

  • Dutilleul C, Jourdain A, Bourguignon J, Hugouvieux V (2008) The Arabidopsis putative selenium-binding protein family: expression study and characterization of SBP1 as a potential new player in cadmium detoxification processes. Plant Physiol 147:239–251

    Article  CAS  Google Scholar 

  • Duy D, Wanner G, Meda AR, von Wirén N, Soll J, Philippar K (2007) PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell 19:986–1006

    Article  CAS  Google Scholar 

  • Eren E, Argüello JM (2004) Arabidopsis HMA2, a divalent heavy metal-transporting PIB-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136:3712–3723

    Article  CAS  Google Scholar 

  • Fukao Y, Ferjani A, Fujiwara M, Nishimori Y, Ohtsu I (2009) Identification of zinc-responsive proteins in the roots of Arabidopsis thaliana using a highly improved method of two-dimensional electrophoresis. Plant Cell Physiol 50:2234–2239

    Article  CAS  Google Scholar 

  • Gasic K, Korban SS (2007) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285

    Article  CAS  Google Scholar 

  • Gojon A, Gaymard F (2010) Keeping nitrate in the roots: an unexpected requirement for cadmium tolerance in plants. J Mol Cell Biol 2:299–301

    Article  CAS  Google Scholar 

  • Gong J-M, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci U S A 100:10118–10123

    Article  CAS  Google Scholar 

  • Goodwin SB, Sutter TR (2009) Microarray analysis of Arabidopsis genome response to aluminum stress. Biol Plant 53:85–99

    Article  CAS  Google Scholar 

  • Guo W-J, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706

    Article  CAS  Google Scholar 

  • Hansen BG, Halkier BA (2005) New insight into the biosynthesis and regulation of indole compounds in Arabidopsis thaliana. Planta 221:603–606

    Article  CAS  Google Scholar 

  • Harada E, Yamaguchi Y, Koizumi N, Sano H (2002) Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. J Plant Physiol 159:445–448

    Article  CAS  Google Scholar 

  • Hassinen VH, Tervahauta AI, Kärenlampi SO (2007) Searching for genes involved in metal tolerance, uptake, and transport. In: Willey N (ed) Phytoremediation. Methods and reviews. Humana Press Inc., Totowa, pp 265–289

    Chapter  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis thaliana. Plant Physiol 143:1705–1719

    Article  CAS  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette M-LM, Cuine S, Auroy P, Richaud P, Forestier C et al (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    Article  CAS  Google Scholar 

  • Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383–393

    Article  CAS  Google Scholar 

  • Howarth JR, Domínguez-Solís JR, Gutíerrez-Alcalá G, Wray JL, Romero LC, Gotor C (2003) The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium. Plant Mol Biol 51:589–598

    Article  CAS  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J et al (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin

    Book  Google Scholar 

  • Kai K, Horita J, Wakasa K, Miyagawa H (2007) Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry 68:1651–1663

    Article  CAS  Google Scholar 

  • Kanter U, Hauser A, Michalke B, Dräxl S, Schäffner AR (2010) Caesium and strontium accumulation in shoots of Arabidopsis thaliana: genetic and physiological aspects. J Exp Bot 61:3995–4009

    Article  CAS  Google Scholar 

  • Kashem MA, Singh BR, Kubota H, Sugawara R, Kitajima N, Kondo T, Kawai S (2010) Zinc tolerance and uptake by Arabidopsis halleri ssp. gemmifera grown in nutrient solution. Environ Sci Pollut Res Int 17:1174–1176

    Article  CAS  Google Scholar 

  • Kim D-Y, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140:922–932

    Article  CAS  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    Article  CAS  Google Scholar 

  • Kung C-CS Huang W-N, Huang Y-C, Yeh K-C (2006) Proteomic survey of copper-binding proteins in Arabidopsis roots by immobilized metal affinity chromatography and mass spectrometry. Proteomics 6:2746–2758

    Article  CAS  Google Scholar 

  • Kvesitadze G, Khatisashvili G, Sadunishvili T, Ramsden JJ (eds) (2006) Biochemical mechanisms of detoxification in higher plants. Springer, Berlin

    Google Scholar 

  • Lee S, Moon JS, Ko T-S, Petros D, Goldsbrough PB, Korban SS (2003a) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  CAS  Google Scholar 

  • Lee S, Petros D, Moon JS, Ko T-S, Goldsbrough PB, Korban SS (2003b) Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiol Biochem 41:903–910

    Article  CAS  Google Scholar 

  • Li W, Khan MA, Yamaguchi S, Kamiya Y (2005) Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. J Plant Growth Regul 46:45–50

    Article  CAS  Google Scholar 

  • Li Y, Dankher OP, Carreira L, Smith AP, Meagher RP (2006) The shoot-specific expression of γ-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298

    Article  CAS  Google Scholar 

  • Li J-Y, Fu Y-L, Pike SM, Bao J, Tian W, Zhang Y, Chen C-Z et al (2010) The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 22:1633–1646

    Article  CAS  Google Scholar 

  • Liu T, Liu S, Guan H, Ma L, Chen Z, Gu H, Qu L-J (2009) Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environ Exp Bot 67:377–386

    Article  CAS  Google Scholar 

  • Ludewig U, Fromme WB (2002) Genes and proteins for solute transport and sensing. In: Somerville CR, Meyerowitz EM (eds) The arabidopsis book. American Society of Plant Biologists, Rockville, http://www.aspb.org/publications/arabidopsis/ - this publication is only available as an on-line text

    Google Scholar 

  • Ludwig-Müller J (2007) Indole-3-butyric acid synthesis in ecotypes and mutants of Arabidopsis thaliana under different growth conditions. J Plant Physiol 164:47–59

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  Google Scholar 

  • Magidin M, Pittman JK, Hirschi KD, Bartel B (2003) ILR2, a novel gene regulating IAA conjugate sensitivity and metal transport in Arabidopsis thaliana. Plant J 35:523–534

    Article  CAS  Google Scholar 

  • Maksymiec W, Krupa Z (2002) Jasmonic acid and heavy metals in Arabidopsis plants – a similar physiological response to both stressors? J Plant Physiol 159:509–515

    Article  CAS  Google Scholar 

  • Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57:187–194

    Article  CAS  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewiczb S et al (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162:1338–1346

    Article  CAS  Google Scholar 

  • Maksymiec W, Wójcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66:421–427

    Article  CAS  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  CAS  Google Scholar 

  • Mijovilovich A, Leitenmaier B, Meyer-Klaucke W, Kroneck PMH, Götz B, Küpper H (2009) Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype). Plant Physiol 151:715–731

    Article  CAS  Google Scholar 

  • Mira H, Martínez N, Peñarrubia L (2002) Expression of a vegetative-storage-protein gene from Arabidopsis is regulated by copper, senescence and ozone. Planta 214:939–946

    Article  CAS  Google Scholar 

  • Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D et al (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci U S A 103:16598–16603

    Article  CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  CAS  Google Scholar 

  • Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Correlation with copper tolerance. Plant Physiol 109:945–954

    Article  CAS  Google Scholar 

  • Ogawa S, Yoshidomi T, Yoshimura E (2011) Cadmium(II)-stimulated enzyme activation of Arabidopsis thaliana phytochelatin synthase 1. J Inorg Biochem 105:111–117

    Article  CAS  Google Scholar 

  • Pasternak T, Rudas V, Potters G, Jansen MAK (2005) Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings. Environ Exp Bot 53:299–314

    Article  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    Article  CAS  Google Scholar 

  • Peterson AG, Oliver DJ (2006) Leaf-targeted phytochelatin synthase in Arabidopsis thaliana. Plant Physiol Biochem 44:885–892

    Article  CAS  Google Scholar 

  • Połeć-Pawlak K, Ruzik R, Abramski K, Ciurzyńska M, Gawrońska H (2005) Cadmium speciation in Arabidopsis thaliana as a strategy to study metal accumulation system in plants. Anal Chim Acta 540:61–70

    Article  CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, Sanità di Toppi L et al (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    Article  CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    Article  CAS  Google Scholar 

  • Przedpełska E, Wierzbicka M (2007) Arabidopsis arenosa (Brassicaceae) from a lead–zinc waste heap in southern Poland – a plant with high tolerance to heavy metals. Plant Soil 299:43–53

    Article  CAS  Google Scholar 

  • Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalization of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227:1343–1349

    Article  CAS  Google Scholar 

  • Remans T, Opdenakker K, Smeets K, Mathijsen D, Vangronsveld J, Cuypers A (2010) Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Funct Plant Biol 37:532–544

    Article  CAS  Google Scholar 

  • Rogers EE, Eide DJ, Guerino ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci U S A 97:12356–12360

    Article  CAS  Google Scholar 

  • Roosens NHCJ, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13:208–215

    Article  CAS  Google Scholar 

  • Roth U, von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57:4003–4013

    Article  CAS  Google Scholar 

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sanita di Toppi L, Gremigni P, Pawlik-Skowroska B, Prasad MNV, Cobbett CS (2003) Response to heavy metals in plants: a molecular approach. In: Toppi L, Pawlik-Skowroska B (eds) Abiotic stresses in plants. Kluwer Academic Publishers, Dordrecht, pp 133–156

    Google Scholar 

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann J-L et al (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826

    Article  CAS  Google Scholar 

  • Semane B, Dupae J, Cuypers A, Noben J-P, Tuomainen M, Tervahauta A et al (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254

    Article  CAS  Google Scholar 

  • Sharma SS, Kumar V (2002) Responses of wild type and abscisic acid mutants of Arabidopsis thaliana to cadmium. J Plant Physiol 159:1323–1327

    Article  CAS  Google Scholar 

  • Singh N, Ma LQ (2007) Assessing plants for phytoremediation of arsenic-contaminated soils. In: Willey N (ed) Phytoremediation. Methods and reviews. Humana Press Inc., Totowa, pp 319–347

    Chapter  Google Scholar 

  • Skórzyńska-Polit E, Pawlikowska-Pawlęga B, Szczuka E, Drążkiewicz M, Krupa Z (2006) The activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and copper stresses. J Plant Growth Regul 48:29–39

    Article  CAS  Google Scholar 

  • Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden S et al (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8

    Article  CAS  Google Scholar 

  • Smeets K, Opdenakker K, Remans T, Van Sanden S, Van Belleghem F, Semane B et al (2009) Oxidative stress-related responses at transcriptional and enzymatic levels after exposure to Cd or Cu in a multipollution context. J Plant Physiol 166:1982–1992

    Article  CAS  Google Scholar 

  • Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W et al (2008) The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol 146:589–601

    Article  CAS  Google Scholar 

  • Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  CAS  Google Scholar 

  • Tan-Kristanto A, Hoffmann A, Woods R, Batterham P, Cobbett C, Sinclair C (2003) Translational asymmetry as a sensitive indicator of cadmium stress in plants: a laboratory test with wild-type and mutant Arabidopsis thaliana. New Phytol 159(471):477

    Google Scholar 

  • Tehseen M, Cairns N, Sherson S, Cobbett CS (2010) Metallochaperone-like genes in Arabidopsis thaliana. Metallomics 2:556–564

    Article  CAS  Google Scholar 

  • Tennstedt P, Peisker D, Böttcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149:938–948

    Article  CAS  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996

    Article  CAS  Google Scholar 

  • Van Belleghem F, Cuypers A, Semane B, Smeets K, Vangronsveld J, d’Haen J, Valcke R (2007) Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytol 173:495–508

    Article  CAS  Google Scholar 

  • van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J et al (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  CAS  Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Article  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Vanhoudt N, Vandenhove H, Smeets K, Remans T, Van Hees M et al (2008) Effects of uranium and phosphate concentrations on oxidative stress related responses induced in Arabidopsis thaliana. Plant Physiol Biochem 46:987–996

    Article  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Yu-Ping L, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci U S A 96:7110–7115

    Article  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:1–9

    Article  CAS  Google Scholar 

  • Watanabe A, Ito H, Chiba M, Ito A, Shimizu H, Fuji S, Nakamura S, Hattori H et al (2010) Isolation of novel types of Arabidopsis mutants with altered reactions to cadmium: cadmium-gradient agar plates are an effective screen for the heavy metal-related mutants. Planta 232:825–836

    Article  CAS  Google Scholar 

  • Waters BM, Chu H-H, DiDonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL (2006) Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141:1446–1458

    Article  CAS  Google Scholar 

  • Wienkoop S, Zoeller D, Ebert B, Simon-Rosin U, Fisahn J, Glinski M, Weckwerth W (2004) Cell-specific protein profiling in Arabidopsis thaliana trichomes: identification of trichome-located proteins involved in sulfur metabolism and detoxification. Phytochemistry 65:1641–1649

    Article  CAS  Google Scholar 

  • Wintz H, Fox T, Wu Y-Y, Feng V, Chen W, Chang H-S, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    Article  CAS  Google Scholar 

  • Wojas S, Hennig J, Plaza S, Geisler M, Siemianowski O, Sklodowska A, Ruszczynska A, Bulska E, Antosiewicz DM (2009) Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ Pollut 157:2781–2789

    Article  CAS  Google Scholar 

  • Wójcik M, Tukiendorf A (2004) Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. J Plant Growth Regul 44:71–80

    Article  CAS  Google Scholar 

  • Wójcik M, Vangronsveld J, D’Haenc J, Tukiendorf A (2005a) Cadmium tolerance in Thlaspi caerulescens. II. Localization of cadmium in Thlaspi caerulescens. Environ Exp Bot 53:163–171

    Google Scholar 

  • Wójcik M, Vangronsveld J, Tukiendorf A (2005b) Cadmium tolerance in Thlaspi caerulescens I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium. Environ Exp Bot 53:151–161

    Google Scholar 

  • Wójcik M, Pawlikowska-Pawlęga B, Tukiendorf A (2009) Physiological and ultrastructural changes in Arabidopsis thaliana as affected by changed GSH level and Cu excess. Russ J Plant Physiol 56:820–829

    Article  CAS  Google Scholar 

  • Wong CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78

    Article  CAS  Google Scholar 

  • Wong CKE, Jarvis RS, Sherson SM, Cobbett CS (2009) Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana. New Phytol 181:79–88

    Article  CAS  Google Scholar 

  • Zhang L, Ackley AR, Pilon-Smits EAH (2007) Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions. J Plant Physiol 164:327–336

    Article  CAS  Google Scholar 

  • Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57:3575–3582

    Article  CAS  Google Scholar 

  • Zimmermann M, Clarke O, Gulbis JM, Keizer DW, Jarvis RS, Cobbett CS, Hinds MG, Xiao Z, Wedd AG (2009) Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Biochemistry 48:11640–11654

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Sofo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sofo, A., Scopa, A., Remans, T., Vangronsveld, J., Cuypers, A. (2012). Biochemical and Functional Responses of Arabidopsis thaliana Exposed to Cadmium, Copper and Zinc. In: Anjum, N., Ahmad, I., Pereira, M., Duarte, A., Umar, S., Khan, N. (eds) The Plant Family Brassicaceae. Environmental Pollution, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3913-0_9

Download citation

Publish with us

Policies and ethics