Skip to main content

Biometrics from Cellular Imaging

  • Chapter
  • First Online:
Book cover Biometrics under Biomedical Considerations

Abstract

In this chapter, cellular imaging is considered from Medical Biometrics of cells. In particular, the chapter brings together different aspects of the cellular imaging from microscopy to cell biology, and from image processing to genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Baker, Cellular imaging: taking a long, hard look. Nature 466(7310), 1137–1140 (2010)

    Article  Google Scholar 

  2. J. Prewitt, M.L. Mendelsohn, The analysis of cell images. Ann. N. Y. Acad. Sci. 128(1), 1035–1053 (1966)

    Google Scholar 

  3. X. Qian, S.K. Goderie, Q. Shen, J.H. Stern, S. Temple, Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125(16), 3143–3152 (1998)

    Google Scholar 

  4. K. Preston, Computer processing of biomedical images. Computer 9(5), 54–68 (1976)

    Article  MATH  Google Scholar 

  5. J. Rittscher, Characterization of biological processes through automated image analysis. Annu. Rev. Biomed. Eng. 12, 315–344 (2010)

    Article  Google Scholar 

  6. E. Meijering, Cell segmentation: 50 years down the road [life sciences]. IEEE Signal Process. Mag. 29(5), 140–145 (2012)

    Article  Google Scholar 

  7. X. Chen, B. Zheng, H. Liu, Optical and digital microscopic imaging techniques and applications in pathology. Anal. Cell. Pathol. 34(1, 2), 5–18 (2011)

    Article  Google Scholar 

  8. M. Abramowitz, Microscope Basics and Beyond (Olympus Corporation Publishing, New York, 1987)

    Google Scholar 

  9. M. Abramowitz, Contrast Method in Microscopy: Transmitted Light (Olympus Corporation Publishing, New York, 1987)

    Google Scholar 

  10. M. Abramowitz, Fluorescence Microscopy: The Essentials (Olympus Corporation Publishing, New York, 1987)

    Google Scholar 

  11. M.W. Davidson, M. Abramowitz, Optical Microscopy (Olympus America, New York, 1999)

    Google Scholar 

  12. A. Bogner, P.H. Jouneau, G. Thollet, D. Basset, C. Gauthier, A history of scanning electron microscopy developments: towards wet-STEM imaging. Micron 38, 390–401 (2007)

    Article  Google Scholar 

  13. G. Binnig, H. Rohrer, Scanning tunneling microscopy. Helv. Phys. Acta 55(6), 726–735 (1982)

    Google Scholar 

  14. S. Bradbury, P. Evennett, Fluorescence Microscopy, Contrast Techniques in Light Microscopy (BIOS Scientific Publishers Ltd., Oxford, 1996)

    Google Scholar 

  15. D.J. Stephens, V.J. Allan, Light microscopy techniques for live cell imaging. Science 300(5616), 82–86 (2003)

    Article  Google Scholar 

  16. E.C. Jensen, Overview of live cell imaging: requirements and methods used. Anat. Rec. 296(1), 1–8 (2013)

    Article  Google Scholar 

  17. B.O. Leung, K.C. Chou, Review of super-resolution fluorescence microscopy for biology. Appl. Spectrosc. 65(9), 967–980 (2011)

    Article  Google Scholar 

  18. C.J.R. Sheppard, M. Gu, M. Roy, Signal to noise ratio in confocal microscope systems. J. Microsc. 168(3), 209–218 (1992)

    Article  Google Scholar 

  19. C.T. Wallace, C.M. St. Croix, S.C. Watkins, Data management and archiving in a large microscopy and imaging, multi user facility: problems and solutions. Mol. Reprod. Dev. 82(9), 630–634 (2015)

    Article  Google Scholar 

  20. T. Pietzsch, S. Saalfeld, S. Preibisch, P. Tomancak, Big DataViewer: visualization and processing for large image data sets. Nat. Methods 12(6), 481–483 (2015)

    Article  Google Scholar 

  21. M. Renner, P.N. Lacor, P.T. Velasco, J. Xu, A. Contractor, W.L. Klein, A. Triller, Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 66(5), 739–754 (2010). https://doi.org/10.1016/j.neuron.2010.04.029

    Article  Google Scholar 

  22. B. Chazotte, Labeling mitochondria with MitoTracker dyes. Cold Spring Harb Protoc. 2011(8), 990–992 (2011). https://doi.org/10.1101/pdb.prot5648

    Article  Google Scholar 

  23. J.B. Grimm, B.P. English, J. Chen, J.P. Slaughter, Z. Zhang, A. Revyakin, R. Patel, J.J. Macklin, D. Nor-manno, R.H. Singer, T. Lionnet, L.D. Lavis, A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12(3), 244–250 (2015). https://doi.org/10.1038/nmeth.3256

    Article  Google Scholar 

  24. J.C. Schmidt, A.J. Zaug, T.R. Cech, Live cell imaging reveals the dynamics of telomerase recruitment to telomeres. Cell 166(5), 1188–1197.e9 (2016). https://doi.org/10.1016/j.cell.2016.07.033

    Article  Google Scholar 

  25. A.N. Shrivastava, J.M. Kowalewski, M. Renner, L. Bousset, A. Koulakoff, R. Melki, C. Giaume, A. Triller, β-amyloid and ATP-induced diffusional trapping of astrocyte and neuronal metabotropic glutamate type-5 receptors. Glia 61(10), 1673–1686 (2013). https://doi.org/10.1002/glia.22548

    Article  Google Scholar 

  26. A.N. Shrivastava, P.C. Rodriguez, A. Triller, M. Renner, Dynamic micro-organization of P2X7 receptors revealed by PALM based single particle tracking. Front Cell Neurosci. 26(7), 232 (2013). https://doi.org/10.3389/fncel.2013.00232

    Article  Google Scholar 

  27. A.N. Shrivastava, V. Redeker, N. Fritz, L. Pieri, L.G. Almeida, M. Spolidoro, T. Liebmann, L. Bousset, M. Renner, C. Lna, A. Aperia, R. Melki, A. Triller, α-synuclein assemblies sequester neuronal α3-Na+/K+-ATPase and impair Na+ gradient. EMBO J. e201591397 (2015)

    Google Scholar 

  28. E. Abbe, Contributions to the theory of the microscope and microscopic detection (translated from German). Arch. Mikroskop. Anat. 9, 413–468 (1873)

    Article  Google Scholar 

  29. M.A. Thompson, M.D. Lew, W.E. Moerner, Extending microscopic resolution with single-molecule imaging and active control. Annu. Rev. Biophys. 41, 321–342 (2012). https://doi.org/10.1146/annurev-biophys-050511-102250

    Article  Google Scholar 

  30. J.M. Monteiro, P.B. Fernandes, F. Vaz, A.R. Pereira, A.C. Tavares, M.T. Ferreira, P.M. Pereira, H. Veiga, E. Kuru, M.S. VanNieuwenhze, Y.V. Brun, S.R. Filipe, M.G. Pinho, Cell shape dynamics during the staphylococcal cell cycle. Nat. Commun. 17(6), 8055 (2015). https://doi.org/10.1038/ncomms9055

    Article  Google Scholar 

  31. D. Li, L. Shao, B.C. Chen, X. Zhang, M. Zhang, B. Moses, D.E. Milkie, J.R. Beach, J.A. Hammer 3rd, M. Pasham, T. Kirchhausen, M.A. Baird, M.W. Davidson, P. Xu, E. Betzig ADVANCED IMAGING, Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349(6251):aab3500 (2015). https://doi.org/10.1126/science.aab3500

    Article  Google Scholar 

  32. W. Muranyi, S. Malkusch, B. Mller, M. Heilemann, H.G. Krusslich, Super-resolution microscopy reveals specific recruitment of HIV-1 envelope proteins to viral assembly sites dependent on the envelope C-terminal tail. PLoS Pathog. 9(2), e1003198 (2013). https://doi.org/10.1371/journal.ppat.1003198

    Article  Google Scholar 

  33. A.N. Shrivastava, A. Aperia, R. Melki, A. Triller, Physico-pathologic mechanisms involved in neurodegeneration: misfolded protein-plasma membrane interactions. Neuron 95(1), 33–50 (2017)

    Article  Google Scholar 

  34. H. Chai, B. Diaz-Castro, E. Shigetomi, E. Monte, J.C. Octeau, X. Yu, W. Cohn, P.S. Rajendran, T. M. Von-driska, J.P. Whitelegge, G. Coppola, B. S. Khakh, Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95(3), 531–549.e9 (2017). https://doi.org/10.1016/j.neuron.2017.06.029

    Article  Google Scholar 

  35. S. Gyoneva, D. Davalos, D. Biswas, S.A. Swanger, E. Garnier-Amblard, F. Loth, K. Akassoglou, S.F. Traynelis, Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia. 62(8), 1345–1360 (2014). https://doi.org/10.1002/glia.22686

    Article  Google Scholar 

  36. N. Kasthuri, K.J. Hayworth, D.R. Berger, R.L. Schalek, J.A. Conchello, S. Knowles-Barley, D. Lee, A. Vzquez-Reina, V. Kaynig, T.R. Jones, M. Roberts, J.L. Morgan, J.C. Tapia, H.S. Seung, W.G. Roncal, J.T. Vogelstein, R. Burns, D.L. Sussman, C.E. Priebe, H. Pfister, J.W. Lichtman, Saturated reconstruction of a volume of neocortex. Cell 162(3), 648–661 (2015). https://doi.org/10.1016/j.cell.2015.06.054

    Article  Google Scholar 

  37. BRAIN Initiative, https://www.braininitiative.nih.gov/

  38. Allen Brain atlas, http://www.brain-map.org/

  39. Human Brain Project, https://www.humanbrainproject.eu/en/

  40. K. Chung, J. Wallace, S.Y. Kim, S. Kalyanasundaram, A.S. Andalman, T.J. Davidson, J.J. Mirzabekov, K.A. Zalocusky, J. Mattis, A.K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, K. Deisseroth, Structural and molecular interrogation of intact biological systems. Nature 497(7449), 332–337 (2013). https://doi.org/10.1038/nature12107

    Article  Google Scholar 

  41. N. Renier, Z. Wu, D.J. Simon, J. Yang, P. Ariel, M. Tessier-Lavigne, iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159(4), 896–910 (2014). https://doi.org/10.1016/j.cell.2014.10.010

    Article  Google Scholar 

  42. M. Belle, D. Godefroy, G. Couly, S.A. Malone, F. Collier, P. Giacobini, A. Chdotal. Tri dimensional visualization and analysis of early human development. Cell 169(1), 161–173.e12 (2017). https://doi.org/10.1016/j.cell.2017.03.008. PubMed PMID: 28340341

    Article  Google Scholar 

  43. Ivan Fraietta, Fabio Gasparri, The development of high-content screening (HCS) technology and its importance to drug discovery. Expert Opin. Drug Discov. 11(5), 501–514 (2016)

    Article  Google Scholar 

  44. Marc Bickle, The beautiful cell: high-content screening in drug discovery. Anal. Bioanal. Chem. 398(1), 219–226 (2010)

    Article  Google Scholar 

  45. Michael Boutros, Florian Heigwer, Christina Laufer, Microscopy-based high-content screening. Cell 163(6), 1314–1325 (2015)

    Article  Google Scholar 

  46. D.C. Swinney, Phenotypic vs. target-based drug discovery for first-in-class medicines. Clin. Pharmacol. Ther. 93(4), 299 (2013)

    Article  Google Scholar 

  47. J.G. Moffat et al., Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16(8), 531 (2017)

    Article  Google Scholar 

  48. R. Su et al., High-throughput imaging-based nephrotoxicity prediction for xenobiotics with diverse chemical structures. Arch. Toxicol. 90(11), 2793–2808 (2016)

    Article  Google Scholar 

  49. P. Horvath, N. Aulner, M. Bickle, A.M. Davies, E. Del Nery, D. Ebner, S.L. Shorte, Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov. 15(11), 751–769 (2016)

    Article  Google Scholar 

  50. C.M. Garvey et al., A high-content image-based method for quantitatively studying context-dependent cell population dynamics. Sci. Rep. 6, 29752 (2016)

    Google Scholar 

  51. W. Zhang et al., Pharmacogenetics of drugs withdrawn from the market. Pharmacogenomics 13(2), 223–231 (2012)

    Article  Google Scholar 

  52. I. Smal, M. Loog, W. Niessen, E. Meijering, Quantitative comparison of spot detection methods in fluorescence microscopy. IEEE Trans. Med. Imaging 29(2), 282–301 (2010)

    Article  Google Scholar 

  53. M. Hausmann, B. Schneider, J. Bradl, C.G. Cremer, High-precision distance microscopy of 3D nanostructures by a spatially modulated excitation fluorescence micro-scope, in Proceedings of SPIE 3197, Optical Biopsies and Microscopic Techniques II, 29 Dec 1997. https://doi.org/10.1117/12.297969

  54. E. Cuche, F. Bevilacqua, C. Depeursinge, Digital holography for quantitative phase-contrast imaging. Opt. Lett. 24(5), 291293 (1999)

    Article  Google Scholar 

  55. P. Marquet, B. Rappaz, P.J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge, Digital holographic microscopy: a noninvasive contrast imaging technique al-lowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30(5), 468–470 (2005)

    Article  Google Scholar 

  56. I. Smal, W. Niessen, E. Meijering, A new detection scheme for multiple object tracking in fluorescence microscopy by joint probabilistic data association filtering, in 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008, ISBI 2008 (IEEE, 2008), pp. 264–267

    Google Scholar 

  57. I.F. Sbalzarini, P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151(2), 182–195 (2005)

    Article  Google Scholar 

  58. L. Liang, H. Shen, P. De Camilli, J.S. Duncan, Tracking clathrin coated pits with a multiple hypothesis based method, in International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Berlin, 2010), pp. 315–322

    Chapter  Google Scholar 

  59. B. Zhang, M.J. Fadili, J.L. Starck, J.C. Olivo-Marin, Multiscale variance-stabilizing transform for mixed-Poisson-Gaussian processes and its applications in bioimaging, in IEEE International Conference on Image Processing, 2007, ICIP 2007, vol. 6 (IEEE, 2007), pp. VI-233

    Google Scholar 

  60. O. Durr, B. Sick, Single-cell phenotype classification using deep convolutional neural networks. J. Biomol. Screen. 21(9), 998–1003 (2016)

    Article  Google Scholar 

  61. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  62. K. Sirinukunwattana, S.E.A. Raza, Y.W. Tsang, D.R. Snead, I.A. Cree, N.M. Rajpoot, Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)

    Article  Google Scholar 

  63. G. Litjens, C.I. Snchez, N. Timofeeva, M. Hermsen, I. Nagtegaal, I. Kovacs, C. Hulsbergen-Van De Kaa, P. Bult, B. Van Ginneken, J. Van Der Laak, Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016)

    Article  Google Scholar 

  64. N. Chenouard, I. Smal, F. De Chaumont, M. Maka, I.F. Sbalzarini, Y. Gong, J. Cardinale, C. Carthel, S. Coraluppi, M. Winter, A.R. Cohen, Objective comparison of particle tracking methods. Nat. Methods 11(3), 281–289 (2014)

    Article  Google Scholar 

  65. D. Nair, E. Hosy, J.D. Petersen, A. Constals, G. Giannone, D. Choquet, J.B. Sibarita, Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J. Neurosci. 33(32), 13204–13224 (2013)

    Article  Google Scholar 

  66. L.D. Lavis, J.B. Grimm, B.P. English, A.K. Muthusamy, B.P. Mehl, P. Dong, T.A. Brown, J. Lippincott-Schwartz, Z. Liu, T. Lionnet, L.D. Lavis, Bright photoactivatable fluorophores for single-molecule imaging. BioRxiv 066779 (2016)

    Google Scholar 

  67. S. Manley, J.M. Gillette, G.H. Patterson, H. Shroff, H.F. Hess, E. Betzig, J. Lippincott-Schwartz, High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5(2), 155–157 (2008)

    Article  Google Scholar 

  68. F. Persson, M. Lindn, C. Unoson, J. Elf, Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10(3), 265 (2013)

    Article  Google Scholar 

  69. A. Serg, N. Bertaux, H. Rigneault, D. Marguet, Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods 5(8), 687–694 (2008)

    Article  Google Scholar 

  70. J.B. Masson, P. Dionne, C. Salvatico, M. Renner, C.G. Specht, A. Triller, M. Dahan, Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. Biophys. J. 106(1), 74–83 (2014)

    Article  Google Scholar 

  71. V. Ulman, D. Svoboda, M. Nykter, M. Kozubek, P. Ruusuvuori, Virtual cell imaging: a review on simulation methods employed in image cytometry. Cytom. Part A 89(12), 1057–1072 (2016)

    Article  Google Scholar 

  72. V. Ulman, Z. Ormu, D. Svoboda, TRAgen: a tool for generation of synthetic time-lapse image sequences of living cells, in International Conference on Image Analysis and Processing (Springer, Cham, 2015), pp. 623–634

    Chapter  Google Scholar 

  73. D. Svoboda, V. Ulman, Mitogen: a framework for generating 3D synthetic time-lapse sequences of cell populations in fluorescence microscopy. IEEE Trans. Med. Imaging 36(1), 310–321 (2017)

    Article  Google Scholar 

  74. TRAgen implementation, http://cbia.fi.muni.cz/projects/tragen.html

  75. Mitogen implementation, http://cbia.fi.muni.cz/projects/mitogen.html

  76. F. Aguet, D. Van De Ville, M. Unser, Model-based 2.5-D deconvolution for extended depth-of-field in brightfield microscopy. IEEE Trans. Image Process. 17(7), 1144–1153 (2008)

    Article  MathSciNet  Google Scholar 

  77. B. Forster, D. Van De Ville, J. Berent, D. Sage, M. Unser, Complex wavelets for extended depth-of-field: a new method for the fusion of multichannel microscopy images. Microsc. Res. Tech. 65(1–2), 33–42 (2004)

    Article  Google Scholar 

  78. A. Shihavuddin, S. Basu, E. Rexhepaj, F. Delestro, N. Menezes, S.M. Sigoillot, E. Del Nery, F. Selimi, N. Spassky, A. Genovesio, Smooth 2D manifold extraction from 3D image stack. Nat. Commun. 8, 15554 (2017)

    Article  Google Scholar 

  79. F. De Chaumont, S. Dallongeville, N. Chenouard, N. Herv, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9(7), 690–696 (2012)

    Article  Google Scholar 

  80. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)

    Article  Google Scholar 

  81. A.E. Carpenter, T.R. Jones, M.R. Lamprecht, C. Clarke, I.H. Kang, O. Friman, D.A. Guertin, J.H. Chang, R.A. Lindquist, J. Moffat, P. Golland, Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7(10), R100 (2006)

    Article  Google Scholar 

  82. Imaris, http://www.bitplane.com/

  83. L. Kamentsky, T.R. Jones, A. Fraser, M. Bray, D. Logan, K. Madden, V. Ljosa, C. Rueden, G.B. Harris, K. Eliceiri, A.E. Carpenter, Improved structure, function, and compatibility for CellProfiler: modular high throughput image analysis software. Bioinformatics (2011). PMID: 21349861. PMCID: PMC3072555

    Google Scholar 

  84. D. Lak-sameethanasan, R.Z. Tan, G.W.-L. Toh, L.-H. Loo, cellXpress: a fast and user-friendly software platform for profiling cellular phenotypes. BMC Bioinform. 14(Suppl 16), S4 (2013). https://doi.org/10.1186/1471-2105-14-s16-s4

    Article  Google Scholar 

  85. A. Ogier, T. Dorval, HCS-Analyzer: open source software for high-content screening data correction and analysis. Bioinformatics (2012)

    Google Scholar 

  86. F. Liu, F. Van Der Lijn, C. Schurmann, G. Zhu, M.M. Chakravarty, P.G. Hysi, A. Wollstein, O. Lao, M. De Bruijne, M.A. Ikram, A. Van Der Lugt, A genome-wide association study identifies five loci influencing facial morphology in Europeans. PLoS Genet. 8(9), e1002932 (2012)

    Article  Google Scholar 

  87. K. Adhikari, M. Fuentes-Guajardo, M. Quinto-Snchez, J. Mendoza-Revilla, J.C. Chacn-Duque, V. Acua-Alonzo, C. Jaramillo, W. Arias, R.B. Lozano, G.M. Pérez, J. Gmez-Valds, A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat. Commun. 7, 11616 (2016)

    Article  Google Scholar 

  88. Wellcome Trust Case Control Consortium, Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145), 661 (2007)

    Article  Google Scholar 

  89. C.J. Willer, E.K. Speliotes, R.J. Loos, S. Li, C.M. Lindgren, I.M. Heid, S.I. Berndt, A.L. Elliott, A.U. Jackson, C. Lamina, G. Lettre, Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41(1), 25–34 (2009)

    Article  Google Scholar 

  90. A. Van Leeuwenhoek, Opera omnia, seu arcana naturae ope microscopio rum detecta, vol. 1. Langerak. Cited before Dieter Gerlach, Geschichte der Mikroskopie. Verlag Harry Deutsch, Frankfurt am Main, Germany, 2009 (1722). ISBN 978-3-8171-1781-9

    Google Scholar 

  91. E.B. Wilson, The Cell in Development and Inheritance Macmillan (New York, 1896)

    Google Scholar 

  92. K. Oguma, S. Makino, A revised check-list of the chromosome number in Vertebrata. J. Genet. 26, 239–254 (1932)

    Article  Google Scholar 

  93. J. Lejeune, Etude des chromosomes somatiques de neuf enfants mongoliens. L’Académie des Science Paris 248, 1713–1727 (1959)

    Google Scholar 

  94. C.E. Ford, K.W. Jones, P.E. Polani, J.C. De Almeida, J.H. Briggs, A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner’s syndrome). Lancet 273(7075), 711–713 (1959)

    Article  Google Scholar 

  95. P.A. Jacobs, A case of human intersexuality having a possible XXY sexdetermining mecha-nism. Nature 183, 302–303 (1959)

    Article  Google Scholar 

  96. J.D. Watson, F.H. Crick, Molecular structure of nucleic acids. Nature 171(4356), 737–738 (1953)

    Article  Google Scholar 

  97. A.J. Jeffreys, V. Wilson, S.L. Thein, Hypervariable minisatellite regions in human DNA. Nature 314(6006), 67–73 (1985)

    Article  Google Scholar 

  98. S. Goodwin, J.D. McPherson, W.R. McCombie, Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17(6), 333–351 (2016)

    Article  Google Scholar 

  99. E.T. Lam, A. Hastie, C. Lin, D. Ehrlich, S.K. Das, M.D. Austin, P.Y. Kwok, Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 30(8), 771–776 (2012)

    Article  Google Scholar 

  100. A. Grunwald, H. Sharim, T. Gabrieli, Y. Michaeli, D. Torchinsky, M. Juhasz, K.R. Wagner, J. Pevsner, J. Reifenberger, A.R. Hastie, H. Cao, Reduced representation optical methylation mapping (R2OM2). bioRxiv 113522 (2017)

    Google Scholar 

  101. E. Meijering, A.E. Carpenter, H. Peng, F.A. Hamprecht, J.C. Olivo-Marin, Imagining the future of bioimage analysis. Nat. Biotechnol. 34(12), 1250–1255 (2016)

    Article  Google Scholar 

  102. C.C. Bilgin, G. Fontenay, Q. Cheng, H. Chang, J. Han, B. Parvin, BioSig3D: high content screening of three-dimensional cell culture models. PLoS ONE 11(3), e0148379 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

A. Othmani would like to thank the Agence Nationale de la Recherche for funding her two years of postdoc (ANR-10-LABX-54 MEMO LIFE) at Institut de biologie de l’Ecole Normale Suprieure (Sep 2015-Sep 2017).

A. N. Shrivastava would like to thank Ronald Melki, CNRS (Paris-Saclay Institute of Neuroscience) and Antoine Triller, INSERM (Institut de biologie de l’Ecole Normale Suprieure) for their continuous support in his research and acknowledge the Agence Nationale de la Recherche (ANR-14-JPCD-0002-01) funding attributed to Ronald Melki. A. D. Afua sincerely thanks Dr. Lionel Navarro for the opportunity to join his lab as a young graduate, for making himself available whenever necessary and for the constructive research environment he provided. His precious support is a key motivator in her research work.

F. D. Carli has received support under the program Investissements dAvenir launched by the French Government and implemented by ANR with the references ANR10LABX54 MEMOLIFE and ANR10IDEX000102 PSL* Research University. F. D. Carli would like to thank Dr. Olivier Hyrien for scientific guidance and countless scientific discussions, and Benot Le Tallec and Vinko Besic for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Ahlem Othmani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Othmani, A.A. et al. (2019). Biometrics from Cellular Imaging. In: Nait-Ali, A. (eds) Biometrics under Biomedical Considerations. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-1144-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1144-4_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1143-7

  • Online ISBN: 978-981-13-1144-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics