Skip to main content

Can Life Exist Without Water? A Data-Driven Approach

  • Chapter
  • First Online:
Space Data Management

Part of the book series: Studies in Big Data ((SBD,volume 141))

  • 78 Accesses

Abstract

Life-as-we-know-it could not exist without water. In fact, living cells survive in environments mainly constituted by water. Cellular shape and functionality are determined by the presence of both the plasma and the cytoplasmic membrane, which define all the necessary compartments for the organization of the cellular matter, as well as to prevent mixing of the cell with its external environment. To this aim, living organisms typically exploit biological lipids, amphiphile molecules comprising a strongly polar head group and one or more long hydrocarbon tails. In aqueous solutions, these amphiphilic molecules tend to aggregate driven by ’like-to-like’ interactions that are usually referred to as the hydrophobic effect. Within this general framework, water is unique because it forms hydrogen bonds with itself as well as with the polar moiety of the amphiphilic molecule. While this marvelous balance is the result of millions of years of evolution, it is possible to imagine that a different type of life could be achieved in different biological environments under different conditions, such as those present in other planets of our universe. Although water has been detected in various thermodynamic states in our solar system, an alternative scenario suggests the possibility of using polarity-inverted membranes in non-polar solvents, such as the hydrocarbons frequently found in earth-like systems. Motivated by this idea, a number of related studies have recently been conducted. In this contribution, I will describe recent efforts by our group along these lines, as well as the possibility of leveraging on recent achievements of AlphaFold that highlighted the power of data-driven approaches hinging on artificial intelligence/machine learning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Board, Space Studies and National Academies of Sciences, Engineering, and Medicine and others: An Astrobiology Strategy for the Search for Life in the Universe. National Academies Press (2019)

    Google Scholar 

  2. Malaterre, C., Jeancolas, C., Nghe, P.: The origin of life: what is the question? Astrobiology 22(7), 851–862 (2022)

    Article  Google Scholar 

  3. MultiMedia LLC: NASA Astrobiology Strategy (2015). https://astrobiology.nasa.gov/nai/media/medialibrary/2015/10/NASA_Astrobiology_Strategy_2015_151008.pdf

  4. OoLEN, Asche, S., Bautista, C., Boulesteix, D., Champagne-Ruel, A., Mathis, C., Markovitch, O., Peng, Z., Adams, A., Dass, A.V., Buch, A., Camprubi, E., Colizzi, E.S., Colón-Santos, S., Dromiack, H., Estrova, V., Garcia, A., Grimaud, G., Halpern, A., Harrison, S.A., Jordan, S.F., Jia, T.Z., Kahana, A., Kolchinsky, A., Moron-Garcia, O., Mizuuchi, R., Nan, J., Orlova, Y., Pearce, B.K.D., Paschek, K., Preiner, M., Pinna, S., Rodríguez-Román, E., Schwander, L., Sharma, S., Smith, H.B., Vieira, A., Xavier, J.C.: What it takes to solve the Origin(s) of life: an integrated review of techniques (2023). https://doi.org/10.48550/arXiv.2308.11665

  5. Warren, A.O., Kite, E.S.: Narrow range of early habitable Venus scenarios permitted by modeling of oxygen loss and radiogenic argon degassing. Proc. Natl. Acad. Sci. 120(11), e2209751120 (2023)

    Article  Google Scholar 

  6. Open AI: ChatGPT (2023). https://chat.openai.com/auth/login

  7. Finkelstein, A.V., Ptitsyn, O.: Protein Physics: A Course of Lectures. Elsevier (2016)

    Google Scholar 

  8. Vologodskii, A.: Biophysics of DNA. Cambridge University Press (2015)

    Google Scholar 

  9. Andersen, O.S., Koeppe, R.E.: Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130 (2007)

    Article  Google Scholar 

  10. Ball, P.: H2O: A Biography of Water. Hachette UK (2015)

    Google Scholar 

  11. ECLT-NICHE: WATER-The strangest liquid (2022). https://www.unive.it/data/33113/25/57974

  12. Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids: With Applications to Soft Matter. Academic Press (2013)

    Google Scholar 

  13. Tanford, C.: Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J. Am. Chem. Soc. 84(22), 4240–4247 (1962)

    Article  Google Scholar 

  14. De Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press (1979)

    Google Scholar 

  15. Flory, P.: Statistical Mechanics of Chain Molecules. Interscience Publishers (1969). https://books.google.it/books?id=EDZRAAAAMAAJ

  16. Journaux, B., Pakhomova, A., Collings, I.E., Petitgirard, S., Boffa Ballaran, T., Brown, J.M., Vance, S.D., Chariton, S., Prakapenka, V.B., Huang, D., et al.: On the identification of hyperhydrated sodium chloride hydrates, stable at icy moon conditions. Proc. Natl. Acad. Sci. 120(9), e2217125120 (2023)

    Article  Google Scholar 

  17. McKay, C.P., Smith, H.D.: Possibilities for methanogenic life in liquid methane on the surface of titan. Icarus 178(1), 274–276 (2005)

    Article  Google Scholar 

  18. Palmer, M.Y., Cordiner, M.A., Nixon, C.A., Charnley, S.B., Teanby, N.A., Kisiel, Z., Irwin, P.G., Mumma, M.J.: ALMA detection and astrobiological potential of vinyl cyanide on titan. Sci. Adv. 3(7), e1700022 (2017)

    Article  Google Scholar 

  19. Liu, K., Zheng, L., Liu, Q., de Vries, J.W., Gerasimov, J.Y., Herrmann, A.: Nucleic acid chemistry in the organic phase: from functionalized oligonucleotides to DNA side chain polymers. J. Am. Chem. Soc. 136(40), 14255–14262 (2014)

    Article  Google Scholar 

  20. Arcella, A., Portella, G., Collepardo-Guevara, R., Chakraborty, D., Wales, D.J., Orozco, M.: Structure and properties of DNA in apolar solvents. J. Phys. Chem. B 118(29), 8540–8548 (2014)

    Article  Google Scholar 

  21. Wolynes, P.G.: Biomolecular folding in vacuo!!!(?). Proc. Natl. Acad. Sci. 92(7), 2426–2427 (1995)

    Article  Google Scholar 

  22. Hartsough, D.S., Merz, K.M., Jr.: Protein dynamics and solvation in aqueous and nonaqueous environments. J. Am. Chem. Soc. 115(15), 6529–6537 (1993)

    Article  Google Scholar 

  23. Nick Pace, C., Trevino, S., Prabhakaran, E., Martin Scholtz, J.: Protein structure, stability and solubility in water and other solvents. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 359(1448), 1225–1235 (2004)

    Google Scholar 

  24. Soares, C.M., Teixeira, V.H., Baptista, A.M.: Protein structure and dynamics in nonaqueous solvents: insights from molecular dynamics simulation studies. Biophys. J. 84(3), 1628–1641 (2003)

    Article  Google Scholar 

  25. Klibanov, A.M.: Improving enzymes by using them in organic solvents. Nature 409(6817), 241–246 (2001)

    Google Scholar 

  26. Griffiths, T.R., Pugh, D.C.: Correlations among solvent polarity scales, dielectric constant and dipole moment, and a means to reliable predictions of polarity scale values from cu. Coord. Chem. Rev. 29(2), 129–211 (1979). https://doi.org/10.1016/S0010-8545(00)82109-8, www.sciencedirect.com/science/article/pii/S0010854500821098

  27. Hayashi, T., Yasuda, S., Škrbić, T., Giacometti, A., Kinoshita, M.: Unraveling protein folding mechanism by analyzing the hierarchy of models with increasing level of detail. J. Chem. Phys. 147(12) (2017)

    Google Scholar 

  28. Roth, R., Harano, Y., Kinoshita, M.: Morphometric approach to the solvation free energy of complex molecules. Phys. Rev. Lett. 97(7), 078101 (2006)

    Article  Google Scholar 

  29. Hayashi, T., Inoue, M., Yasuda, S., Petretto, E., Škrbić, T., Giacometti, A., Kinoshita, M.: Universal effects of solvent species on the stabilized structure of a protein. J. Chem. Phys. 149(4) (2018)

    Google Scholar 

  30. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucl. Acids Res. 28(1), 235–242 (2000)

    Article  Google Scholar 

  31. Bank, P.D.: Protein Data Bank (2023). https://www.rcsb.org/

  32. Carrer, M., Škrbić, T., Bore, S.L., Milano, G., Cascella, M., Giacometti, A.: Can polarity-inverted surfactants self-assemble in nonpolar solvents? J. Phys. Chem. B 124(29), 6448–6458 (2020)

    Article  Google Scholar 

  33. Chaikin, P.M., Lubensky, T.C., Witten, T.A.: Principles of Condensed Matter Physics, vol. 10. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  34. Marrink, S.J., Lindahl, E., Edholm, O., Mark, A.E.: Simulation of the spontaneous aggregation of phospholipids into bilayers. J. Am. Chem. Soc. 123(35), 8638–8639 (2001)

    Article  Google Scholar 

  35. Facchin, M., Scarso, A., Selva, M., Perosa, A., Riello, P.: Towards life in hydrocarbons: aggregation behaviour of “reverse” surfactants in cyclohexane. RSC Adv. 7(25), 15337–15341 (2017)

    Google Scholar 

  36. Dongmo, C.J.F., Carrer, M., Houvet, M., Škrbić, T., Graziano, G., Giacometti, A.: Can the roles of polar and non-polar moieties be reversed in non-polar solvents? Phys. Chem. Chem. Phys. 22(44), 25848–25858 (2020)

    Article  Google Scholar 

  37. Dongmo, C.J.F., Giacometti, A.: Solvent quality and solvent polarity in polypeptides. Phys. Chem. Chem. Phys. 25(6), 4839–4853 (2023)

    Article  Google Scholar 

  38. Rubinstein, M., Colby, R.H.: Polymer Physics (Chemistry). Oxford University Press, 1st edn. (2003). http://amazon.com/o/ASIN/019852059X/

  39. Huang, Y., Cheng, S.: Chain conformations and phase separation in polymer solutions with varying solvent quality. J. Polym. Sci. 59(22), 2819–2831 (2021)

    Article  Google Scholar 

  40. Heidt, A.: Astrobiologists train an AI to find life on mars. Nature (2023)

    Google Scholar 

  41. Warren-Rhodes, K., Cabrol, N.A., Phillips, M., Tebes-Cayo, C., Kalaitzis, F., Ayma, D., Demergasso, C., Chong-Diaz, G., Lee, K., Hinman, N., et al.: Orbit-to-ground framework to decode and predict biosignature patterns in terrestrial analogues. Nat. Astron. 7(4), 406–422 (2023)

    Article  Google Scholar 

  42. Callaway, E.: It will change everything: DeepMind’s AI makes gigantic leap in solving protein structures. Nature 588(7837), 203–205 (2020)

    Google Scholar 

  43. Team, A.: Alphafold: a solution to a 50-year-old grand challenge in biology (2021)

    Google Scholar 

  44. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589 (2021)

    Article  Google Scholar 

  45. Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G.R., Wang, J., Cong, Q., Kinch, L.N., Schaeffer, R.D., et al.: Accurate prediction of protein structures and interactions using a three-track neural network. Science 373(6557), 871–876 (2021)

    Article  Google Scholar 

  46. Thorp, H.H.: Proteins, Proteins Everywhere (2021)

    Google Scholar 

  47. Moore, P.B., Hendrickson, W.A., Henderson, R., Brunger, A.T.: The protein-folding problem: not yet solved. Science 375(6580), 507–507 (2022)

    Article  Google Scholar 

  48. Chen, S.J., Hassan, M., Jernigan, R.L., Jia, K., Kihara, D., Kloczkowski, A., Kotelnikov, S., Kozakov, D., Liang, J., Liwo, A., et al.: Protein folds vs. protein folding: differing questions, different challenges. Proc. Natl. Acad. Sci. 120(1), e2214423119 (2023)

    Google Scholar 

  49. AlphaFold, D.M.: AlphaFold Protein Structure Database (2023). https://alphafold.ebi.ac.uk/

  50. Akdel, M., Pires, D.E., Pardo, E.P., Jänes, J., Zalevsky, A.O., Mészáros, B., Bryant, P., Good, L.L., Laskowski, R.A., Pozzati, G., et al.: A structural biology community assessment of alphafold2 applications. Nat. Struct. Mol. Biol. 29(11), 1056–1067 (2022)

    Article  Google Scholar 

  51. Communication, E.: AlphaFold applications—a community assessment (2022). https://www.embl.org/news/science/alphafold-community-applications/

Download references

Acknowledgements

The work presented in this contribution has been obtained in collaboration with many collaborators to whom I am very grateful. Many discussions with the members of the European Center for Living Technologies (ECLT) are also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achille Giacometti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giacometti, A. (2024). Can Life Exist Without Water? A Data-Driven Approach. In: Cortesi, A. (eds) Space Data Management. Studies in Big Data, vol 141. Springer, Singapore. https://doi.org/10.1007/978-981-97-0041-7_6

Download citation

Publish with us

Policies and ethics