Abstract
In ques to la voro si introduce la classeU delle funzioni reali definite in un reticolo che sono funzioni di utilità di una classe di decisorti detti avversi al rischio e si caratterizza la dominancza stocastica secondo la classeU.
Summary
The aim of this paper is to generalize a result of [4] about stochastic dominance under the assumption of risk aversion. The generalization consists in considering the case of random variables defined on a lattice. We introduce a class of real valued utility functions on a lattice, we show their properties in terms of comparison of lotteries and risk aversiion. The main result of the paper is a characterization of stochastic dominance through this class of functions.
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Bibliografia
M. Cardin.Dominanza stocastica del primo ordine e in probabilità per spazi ordinati, Atti X Convegno AMASES, Siena (1986).
P. C. Fishburn, R. G. Vickson,Theretical foundations of stochastic dominance, inG.A. Whitmore, M. C. Findlay. eds.Stochastic dominance: An Approach to decision making under risk, Health Lexington MA (1978).
S. F. Richard,Multivariate risk aversion, utility independence and separable utility functions, Management Science 22, (1975), 13–21.
M. Scarsini,Dominance conditions for utility functions with multivariate risk aversion, manomics noscritto.
M. Scarsini,Stochastic dominance with pairwise risk aversion, Journal of Mathematical Economics 14, (1985), 187–201.
J. Von Neuman,Functional operators, vol. I, Princeton University Press (1950).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Cardin, M. Dominanza stocastica con avversione al rischio. Rivista di Matematica per le Scienze Economiche e Sociali 10, 23–32 (1987). https://doi.org/10.1007/BF02090473
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02090473