Skip to main content
Log in

Numerical solution for the one-phase Stefan problem by Piecewise constant approximation of the interface

Numerische Lösung des Ein-Phasen Stefan Problems durch stückweise konstante Approximation der Interphase

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The classical one-phase one-dimensional Stefan problem is numerically solved on rectangles,R j , of increasing size controlled by the Stefan condition. This approach is based on a scheme introduced by E. Di Benedetto and R. Spigler in 1983. The practical implementation rests on the representation viathermal potentials of the solutionu j (x, t) to the heat equation inR j . The quantityu j x (x j ,jΔt) which determines the (j+1)-th rectangle is evaluatedanalytically by solving explicitly an integral equation. The solution inR j+1 is then obtained bynumerically evaluating a further integral expression. The algorithm is tested by solving two problems whose solution is explicitly known. Convergence, stability and convergence rate as Δx→0, Δt→0 have been tested and plots are shown.

Zusammenfassung

Das klassische ein dimensionale Ein-Phasen Stefan Problem wird numerisch über wachsende RechteckeR j gelöst, die von der Stefan Bedingung geregelt werden. Dieses Verfahren beruht auf einer Methode, die von E. Di Benedetto und R. Spigler 1983 entwickelt wurde. Die praktische Implementierung beruht auf einer Darstellung mittelsthermischer Potentiale der Lösungu j (x, t) der Wärmegleichung inR j . Der Wertu j x (x j ,jΔt), der das (j+1)-ste Rechteck bestimmt, wird analytisch durch die explizite Lösung einer Integralgleichung berechnet. Die Lösung inR j+1 wird durch numerische Berechnung eines anderen Integralausdruckes bestimmt. Der Algorithmus wird an zwei Problemen getestet, deren Lösung explizit bekannt ist. Die Konvergenz, die Stabilität und die Konvergenzgeschwindgkeit für Δx→0, Δt→0 werden ebenfalls getestet und graphisch dargestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I. A., (eds.): Handbook of Mathematical Functions. New York: Dover 1965.

    Google Scholar 

  2. Borgioli, G., Di Benedetto, E., Ughi, M.: Stefan problems with nonlinear boundary conditions: The polygonal method. Zeit. Angew. Math. Mech.58, 539–546 (1978).

    Google Scholar 

  3. Carlslaw, H. S., Jaeger, J. C.: Conduction of Heat in Solids, 2nd edn. Oxford: Clarendon Press 1959.

    Google Scholar 

  4. Chuang, Y. K., Szekely, J.: On the use of Green's functions for solving melting or solidification problems. Int. J. Heat Mass Transfer14, 1285–1294 (1971).

    Google Scholar 

  5. Comparini, E.: A Mathematical Model for the Production of Bimetallic Strips. In: Proc. of the Fourth ECMI Meeting on Industrial Mathematics, May 29–June 2, 1989, St. Wolfgang, Austria (in press).

  6. Crank, J.: Two methods for the numerical solution of moving boundary problems in diffusion and heat flow. Quart. J. Mech. and Appl. Math.10, 220–231 (1957).

    Google Scholar 

  7. Crank, J.: Free and Moving Boundary Problems. Oxford: Clarendon Press 1984.

    Google Scholar 

  8. Cryer, C. W.: Numerical Methods for Free and Moving Boundary Problems. In: Iserles, A., Powell, M. J. D., (eds.) The State of the Art in Numerical Analysis, Oxford: Clarendon Press 1987, pp. 601–622.

    Google Scholar 

  9. Datzeff, A.: Sur le problème linéaire de Stefan. Annuaire Univ. Sofia, Fac. Sci.,45, 321–352 (1949).

    Google Scholar 

  10. Datzeff, A.: Sur le problème linéaire de Stefan. Memoires de Sciences Physiques, fasc. 69, Paris: Gauthier-Villars 1970.

    Google Scholar 

  11. Di Benedetto, E., Spigler, R.: An algorithm for the one-phase Stefan problem. Rend. Sem. Mat. Univ. Padova69, 109–134 (1983).

    Google Scholar 

  12. Douglas, J., Jr., Gallie, T. M., Jr.: On the numerical integration of a parabolic differential equation subject to a moving boundary condition. Duke Math. J.22, 557–572 (1955).

    Google Scholar 

  13. Fasano, A., Primicerio, M.: Il problema di Stefan con condizioni al contorno non lineari. Ann. Scuola Norm. Sup. Pisa26, 711–737 (1972).

    Google Scholar 

  14. Fasano, A., Primicerio, M.: Su un problema unidimensionale di diffusione in un mezzo a contorno mobile con condizioni ai limiti non lineari. Ann. Mat. Pura Appl., IV sez.,93, 333–357 (1972).

    Google Scholar 

  15. Fasano, A., Primicerio, M., Fontanella, F.: An efficient method for solving free-boundary diffusion problems. Meccanica8, 223–235 (1973).

    Google Scholar 

  16. Fasano, A., Primicerio, M.: La diffusione del calore in uno strato di spessore variabile in presenza di scambi termici con l'ambiente: deduzione di limitazioni a priori sulla temperatura e le sue derivate. Rend. Sem. Mat. Univ. Padova50, 269–330 (1973).

    Google Scholar 

  17. Fasano, A., Primicerio, M.: Convergence of Huber's method for heat conduction problems with change of phase. Zeit. Angew. Math. Mech.53, 341–348 (1973).

    Google Scholar 

  18. Friedmann, A.: Partial Differential Equations of Parabolic Type. Englewood Cliffs: Prentice-Hall 1964.

    Google Scholar 

  19. Huber, A.: Hauptaufsätze über das Fortschreiten der Schmelzgrenze in einem linearen Leiter. Zeit. Angew. Math. Mech.19, 1–21 (1939).

    Google Scholar 

  20. Meyer, G.: Numerical methods for free boundary problems. In: Fasano, A., Primicerio, M., (eds.) Free Boundary Problems. Theory and Applications, Research Notes in Mathematics, vol.79, pp. 590–600. London: Pitman 1983.

    Google Scholar 

  21. Nitsche, J. A.: A finite element method for parabolic free boundary problems. In: Magenes, E. (ed.), Free Boundary Problems, Proc. of a seminar held in Pavia, Italy, September–October 1979, vol.1, pp. 277–318. Rome: Ist. Naz. di Alta Matematica Francesco Severi 1980.

    Google Scholar 

  22. Primicerio, M.: Problemi di diffusione a frontiera libera. Boll. Un. Mat. Ital. (5),18-A, 11–68 (1981).

    Google Scholar 

  23. Reemtsen, R., Lozano, C. J.: An approximation technique for the numerical solution of a Stefan problem. Numer. Math.38, 141–154 (1981).

    Google Scholar 

  24. Rogers, J. C. W., Berger, A. E., Ciment, M.: The alternating phase truncation method for numerical solution of a Stefan problem. SIAM J. Numer. Anal.16, 184–204 (1979).

    Google Scholar 

  25. Rose, M. E.: A method for calculating solutions of parabolic equations with a free boundary. Math. Comp.14, 249–256 (1960).

    Google Scholar 

  26. Rubinstein, L. I.: The Stefan problem. Amer. Math. Soc. Transl., vol.27, Providence, R. I. (1971).

  27. Rubinstein, L. I.: Application of the Integral Equation Technique to the Solution of Several Stefan Problems. In: Magenes, E., (ed.), Free Boundary Problems, Proc. of a seminar held in Pavia, Italy, September–October 1979, vol.1, pp. 383–450. Rome: Ist. Naz. di Alta Matematica Francesco Severi 1980.

    Google Scholar 

  28. Stoer, J., Burlisch, R.: Introduction to Numerical Analysis. New York: Springer 1980.

    Google Scholar 

  29. Tayler, A. B.: Mathematics for Industry. In: Proc. of the Fourth ECMI Meeting on Industrial Mathematics, May 29–June 2, 1989, St. Wolfgang, Austria (in press).

  30. Trench, W. F.: On an explicit method for the solution of a Stefan problem. J. Soc. Ind. Appl. Math.7, 184–204 (1959).

    Google Scholar 

  31. White, R. E.: An enthalpy formulation of the Stefan problem. SIAM J. Numer. Anal.19, 1129–1157 (1982).

    Google Scholar 

  32. White, R. E.: A numerical solution of the enthalphy formulation of the Stefan problem. SIAM J. Numer. Anal.19, 1158–1173 (1982).

    Google Scholar 

  33. White, R. E.: A modified finite difference scheme for the Stefan problem. Math. Comp.41, 337–347 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sartoretto, F., Spigler, R. Numerical solution for the one-phase Stefan problem by Piecewise constant approximation of the interface. Computing 45, 235–249 (1990). https://doi.org/10.1007/BF02250635

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02250635

1980 AMS(MOS) Mathematics Subject Classifications

Key words and phrases

Navigation