Skip to main content
Log in

Theoretical study of substituent effects on electronic and structural properties of 2,4-diamino-5-para-substituted-phenyl-6-ethyl-pyrimidines

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) method at the level of B3LYP with 6–311G(d) basis set was used to investigate the effects of a variety of substituents (H, NH2, NMe2, OCH3, CH3, Cl, Br, CN, NO2) on the electronic and structural properties of 2,4-diamino-5-p-substituted-phenyl-6-ethyl-pyrimidines. The investigation showed that the atomization energy was affected by substitution. Likewise, the molecular orbitals HOMO and LUMO and energy gap ΔE were affected by the substituent. Dipole moment was also affected by the introduction of the substituent. On the other hand, the Mulliken charges at only C1′, C2 and N7, were correlated with both MSP and DSP models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.A. Saleh, J. Mol. Struct. THEOCHEM 915 (2009) 47.

    CAS  Google Scholar 

  2. J. Shorte, Correlation Analysis of Organic Reactivity, Chaps. 3 and 4, Research Studies Press, Wiley, Chichester, 1982.

    Google Scholar 

  3. L.P. Hammett, Physical Organic Chemistry, 2nd ed., Chap. 11, McGraw-Hill, New York, 1970.

    Google Scholar 

  4. J. Shorter, Prog. Phys. Org. Chem. 17 (1990) 1.

    CAS  Google Scholar 

  5. J. Shorter, Chem. Intelligencer 2 (1996) 39.

    Google Scholar 

  6. O. Exner, Correlation Analysis of Chemical Data, Plenum, New York and SNTL, Prague, 1988.

    Google Scholar 

  7. O. Exner, in: N.B. Chapman, J. Shorter (Eds.), Correlation Analysis in Chemistry, Recent Advances Plenum, New York, 1978.

    Google Scholar 

  8. B.A. Saleh, A.H. Essa, S.A.O. Al-Shawi, A.F. Jalbout, J. Mol. Struct. THEOCHEM 909 (2009) 107.

    CAS  Google Scholar 

  9. B.A. Saleha, S.A. Al-Shawia, G.F. Fadhil, J. Phys. Org. Chem. 21 (2008) 96.

    Google Scholar 

  10. A.H. Essa, B.A. Saleh, A.J. Hameed, J. Comput. Theoret. Nanosci. 6 (2009) 706.

    CAS  Google Scholar 

  11. V. Wiwanitkit, Malaria Research in Southeast Asia, Nova Science Publishers, Inc., 2007, p. 47.

    Google Scholar 

  12. National Center for Infectious Diseases, Division of Parasitic Diseases (2007) Internet references. Retrieved from http://www.cdc.gov/malaria/facts.htm

  13. E.B. Burgina, V.P. Baltakhinov, E.V. Boldyreva, T.P. Shakhtschneider, J. Struct. Chem. 45 (2004) 64.

    CAS  Google Scholar 

  14. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.

    Google Scholar 

  15. R. Krishnan, J.S. Kinkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72 (1980) 650.

    CAS  Google Scholar 

  16. C. Hansch, A. Leo, R.W. Taft, Chem. Rev. 91 (1991) 165.

    CAS  Google Scholar 

  17. S. Ehrensons, R.T.C. Brownlee, R.W. Taft, Prog. Phys. Org. Chem. 10 (1973) 1.

    Google Scholar 

  18. K. Tuppurainen, S. Lötjönen, R. Laatikainen, T. Vartiainen, U. Maran, M. Strandberg, T. Tamm, Mutat. Res. 247 (1991) 97.

    CAS  Google Scholar 

  19. D.F.V. Lewis, C. Ioannides, D.V. Parke, Xenobiotica 24 (1994) 401.

    CAS  Google Scholar 

  20. M. Karelson, V.S. Lobanov, A.R. Katritzky, Chem. Rev. 96 (1996) 1027.

    CAS  Google Scholar 

  21. G.K. Hamer, I.R. Peat, W.F. Reynolds, Can. J. Chem. 51 (1973) 897

    CAS  Google Scholar 

  22. G.K. Hamer, I.R. Peat, W.F. Reynolds, Can. J. Chem. 51 (1973) 915.

    CAS  Google Scholar 

  23. J. Bromilow, R.T.C. Brownlee, D.J. Craik, P.R. Fiske, J.E. Rowe, M. Sadek, J. Chem. Soc., Perkin Trans. 2 (1981) 753

    Google Scholar 

  24. R.T.C. Brownlee, D.J. Craik, J. Chem. Soc., Perkin Trans. 2 (1981) 760

    Google Scholar 

  25. R.T.C. Brownlee, D.J. Craik, J. Org. Magn. Reson. 15 (1981) 248.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, B.A., Abood, H.A., Miyamoto, R. et al. Theoretical study of substituent effects on electronic and structural properties of 2,4-diamino-5-para-substituted-phenyl-6-ethyl-pyrimidines. JICS 8, 653–661 (2011). https://doi.org/10.1007/BF03245897

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03245897

Keywords

Navigation