Skip to main content
Log in

Decomposition of Geodesics in the Wasserstein Space and the Globalization Problem

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We will prove a decomposition for Wasserstein geodesics in the following sense: let (X, d, m) be a non-branching metric measure space verifying \({\mathsf{CD}_{loc}(K,N)}\) or equivalently \({\mathsf{CD}^{*}(K,N)}\). We prove that every geodesic \({\mu_{t}}\) in the L 2-Wasserstein space, with \({\mu_{t} \ll m}\), is decomposable as the product of two densities, one corresponding to a geodesic with support of codimension one verifying \({\mathsf{CD}^{*}(K,N-1)}\), and the other associated with a precise one dimensional measure, provided the length map enjoys local Lipschitz regularity. The motivation for our decomposition is in the use of the component evolving like \({\mathsf{CD}^{*}}\) in the globalization problem. For a particular class of optimal transportation we prove the linearity in time of the other component, obtaining therefore the global \({\mathsf{CD}(K,N)}\) for \({\mu_{t}}\). The result can be therefore interpret as a globalization theorem for \({\mathsf{CD}(K,N)}\) for this class of optimal transportation, or as a “self-improving property” for \({\mathsf{CD}^{*}(K,N)}\). Assuming more regularity, namely in the setting of infinitesimally strictly convex metric measure space, the one dimensional density is the product of two differentials giving more insight on the density decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alberti, S. Bianchini and G. Crippa. Structure of level sets and sard-type properties of lipschitz maps. Annali della Scuola Normale Superiore di Pisa—Classe di Scienze (to appear) (2011)

  2. Ambrosio L.: Some fine properties of sets of finite perimeter in ahlfors regular metric measure spaces. Advances in Mathematics, 159, 51–67 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosio L.: Fine properties of sets of finite perimeter in doubling metric measure spaces. Set Valued Analysis, 10, 111–128 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Ambrosio and N. Gigli. A user’s guide to optimal transport (preprint) (2011)

  5. L. Ambrosio, N. Gigli and G. Savarè. Calculus and heat flow in metric measure spaces and application to spaces with Ricci curvature buonded from below (preprint, arXiv:1106.2090).

  6. L. Ambrosio, M. Miranda Jr. and D. Pallara. Special functions of bounded variation in doubling metric measure spaces. In: Calculus of Variations: Topics from the Mathematical Heritage of E. De Giorgi (2004), pp. 1–45.

  7. K. Bacher and K.T. Sturm. Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. Journal of Functional Analysis, (1)259 (2010), 28–56

  8. S. Bianchini and L. Caravenna. On the extremality, uniqueness and optimality of transference plans. Bulletin of the Institute of Mathematics—Academia Sinica (N.S.), (4)4 (2009), 353–454

    Google Scholar 

  9. Bianchini S., Cavalletti F.: The Monge problem for distance cost in geodesic spaces. Communications in Mathematical Physics, 318, 615–673 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Cavalletti and M. Huesmann. Self-intersection of optimal geodesics (preprint arXiv:1211.6547) (2012)

  11. Cavalletti F., Sturm K.-T.: Local curvature-dimension condition implies measure-contraction property. Journal of Functional Analysis, 262, 5110–5127 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cordero-Erausquin D., McCann R.J., Schmuckenshläger M.: A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Inventiones Mathematicae, 146, 219–257 (2011)

    Article  Google Scholar 

  13. D. H. Fremlin. Measure Theory, Vol 4. Torres Fremlin (2002).

  14. S. Gallot, D. Hulin and J. Lafontaine. Riemannian Geometry. Springer-Verlag (1987).

  15. N. Gigli. On the differential structure of metric measure spaces and applications (preprint, arXiv:1205.6622) (2012)

  16. Gigli N.: Optimal maps in non branching spaces with Ricci curvature bounded from below. Geometric and Functional Analysis, 22, 990–999 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Lott and C. Villani. Ricci curvature for metric-measure spaces via optimal transport. Annals of Mathematics, (3)169, (2009), 903–991

  18. Miranda M. Jr.: Functions of bounded variation on “good” metric spaces. Journal of Pure and Applied Mathematics, 82, 975–1004 (2003)

    Article  MATH  Google Scholar 

  19. T. Rajala and K.-T. Sturm. Non-branching geodesics and optimal maps in strong \({\mathsf{CD}(k, \infty)}\) -spaces (arXiv 1207.6754) (2012)

  20. K. T. Sturm. On the geometry of metric measure spaces.I. Acta Mathematica, (1)196 (2006), 65–131

    Google Scholar 

  21. K. T. Sturm. On the geometry of metric measure spaces.II. Acta Mathematica, (1)196 (2006), 133–177

    Google Scholar 

  22. C. Villani. Optimal Transport, Old and New. Springer (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Cavalletti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalletti, F. Decomposition of Geodesics in the Wasserstein Space and the Globalization Problem. Geom. Funct. Anal. 24, 493–551 (2014). https://doi.org/10.1007/s00039-014-0255-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-014-0255-x

Keywords

Navigation