Skip to main content
Log in

A weighted strategy to handle likelihood uncertainty in Bayesian inference

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

The sensitivity of posterior inferences to model specification can be considered as an indicator of the presence of outliers, that are to be considered as highly unlikely values under the assumed model. The occurrence of anomalous values can seriously alter the shape of the likelihood function and lead to posterior distributions far from those one would obtain without these data inadequacies. In order to deal with these hindrances, a robust approach is discussed, which allows us to obtain outliers’ resistant posterior distributions with properties similar to those of a proper posterior distribution. The methodology is based on the replacement of the genuine likelihood by a weighted likelihood function in the Bayes’ formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agostinelli C (2002) Robust model selection in regression via weighted likelihood methodology. Stat Probab Lett 56: 289–300

    Article  MathSciNet  MATH  Google Scholar 

  • Agostinelli C (2006) Notes on pearson residuals and weighted likelihood estimating equations. Stat Probab Lett 76: 1930–1934

    Article  MathSciNet  MATH  Google Scholar 

  • Agostinelli C (2009) Estimating the model of the majority of the data. Adv Appl Math Sci 1: 209–227

    MathSciNet  MATH  Google Scholar 

  • Agostinelli C, Alqallaf F (2010) Robust inference in generalized linear models. http://www.dst.unive.it/~claudio/index.php/research/publications

  • Agostinelli C, Markatou M (2001) Test of hypothesis based on the weighted likelihood methodology. Stat Sinica 1: 499–514

    MathSciNet  Google Scholar 

  • Barnett V, Toby L (1994) Outliers in statistical data. Wiley, New York

    MATH  Google Scholar 

  • Basu A, Lindsay B (1994) Minimum disparity estimation for continuous models: efficiency, distributions and robustness. Ann Inst Stat Math 46: 683–705

    Article  MathSciNet  MATH  Google Scholar 

  • Berger J (1994) An overview of robust bayesian analysis (with discussion). Test 3: 5–124

    Article  MathSciNet  MATH  Google Scholar 

  • Box G, Tiao G (1962) A further look at robustness via bayes’s theorem. Biometrika 49: 419–432

    MathSciNet  MATH  Google Scholar 

  • Cressie N, Read T (1984) Multinomial goodness-of-fit tests. J R Stat Soc Ser B 46: 440–464

    MathSciNet  MATH  Google Scholar 

  • Cressie N, Read T (1988) Cressie–Read statistic. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical sciences, supplementary volume. Wiley, pp 37–39.

  • Dawid A (1973) Posterior expectations for large observations. Biometrika 60: 664–667

    Article  MathSciNet  MATH  Google Scholar 

  • Field C, Smith B (1995) Robust estimation—a weighted maximum likelihood approach. Int Stat Rev 62: 405–424

    Google Scholar 

  • Gelman A, Carlin J, stern H, Rubin D (2004) Bayesian data analysis. Chapman and Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Greco L, Racugno W, Ventura L (2008) Robust likelihood functions in bayesian analysis. J Stat Plan Inf 138: 1258–1270

    Article  MathSciNet  MATH  Google Scholar 

  • Hampel F, Ronchetti E, Rousseeuw P, Stahel W (1986) Robust statistics. The approach based on influence functions. Wiley, New York

    MATH  Google Scholar 

  • Hu F, Zidek J (2002) The weighted likelihood. Can J Stat 30: 347–371

    Article  MathSciNet  MATH  Google Scholar 

  • Huber P, Ronchetti E (2009) Robust statistics. 2nd edn. Wiley, New Jersey

    Book  MATH  Google Scholar 

  • Kass R, Raftery A (1995) Bayes factors. J Am Stat Assoc 90: 773–795

    Article  MATH  Google Scholar 

  • Lavine M (1991) Sensitivity in bayesian statistics: the prior and the likelihood. J Am Stat Assoc 86: 396–399

    Article  MathSciNet  MATH  Google Scholar 

  • Lazar N (2003) Bayesian empirical likelihood. Biometrika 90: 319–326

    Article  MathSciNet  MATH  Google Scholar 

  • Length R, Green P (1987) Consistency of deviance-based m-estimators. J R Stat Soc B 49: 326–330

    Google Scholar 

  • Lindsay B (1994) Efficiency versus robustness: the case for minimum hellinger distance and related methods. Ann Stat 22: 1018–1114

    Article  MathSciNet  Google Scholar 

  • Markatou M, Basu A, Lindsay B (1997) Weighted likelihood estimating equations: the discrete case with applications to logistic regression. J Stat Plan Inf 57: 215–232

    Article  MathSciNet  MATH  Google Scholar 

  • Markatou M, Basu A, Lindsay B (1998) Weighted likelihood estimating equations with a bootstrap root search. J Am Stat Assoc 93: 740–750

    Article  MathSciNet  MATH  Google Scholar 

  • Maronna A, Martin R, Yohai V (2006) Robust statistics. Theory and methods. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Monahan J, Boos D (1992) Proper likelihoods for bayesian analysis. Biometrika 79: 271–278

    Article  MathSciNet  MATH  Google Scholar 

  • Neykov N, Neytchev P (1990) A robust alternative of the maximum likelihood estimators. In: Proceedings of COMPSTAT 1990, pp 99–100

  • O’Hagan A (1979) On outlier rejection phenomena in bayes inference. J R Stat Soc B 41: 258–367

    MathSciNet  Google Scholar 

  • O’Hagan A (1988) Modelling with heavy tails. BayesStat3. pp 345–359

  • O’Hagan A (1990) Outliers and credence for location parameter inference. J Am Stat Assoc 85: 172–176

    Article  MathSciNet  MATH  Google Scholar 

  • Park C, Basu A, Lindsay B (2002) The residual adjustment function and weighted likelihood: a graphical interpretation of robustness of minimum disparity estimators. Comput Stat Data Anal 39(1): 21–33

    Article  MathSciNet  MATH  Google Scholar 

  • Pericchi L, Perez M (1994) Posterior robustness with more than one sampling model. J Stat Plan Inf 40: 279–294

    Article  MathSciNet  MATH  Google Scholar 

  • Prakasa Rao B (1983) Nonparametric functional estimation. Academic Press, New York

    MATH  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org, ISBN 3-900051-07-0

  • Shyamalkumar N (2000) Robust Bayesian analysis. Springer, Berlin

    Google Scholar 

  • Windham M (1995) Robustifying model fitting. J R Stat Soc B 57: 599–609

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Greco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agostinelli, C., Greco, L. A weighted strategy to handle likelihood uncertainty in Bayesian inference. Comput Stat 28, 319–339 (2013). https://doi.org/10.1007/s00180-011-0301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-011-0301-1

Keywords

Navigation