Skip to main content
Log in

Model-based INAR bootstrap for forecasting INAR(p) models

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper we analyse some bootstrap techniques to make inference in INAR(p) models. First of all, via Monte Carlo experiments we compare the performances of these methods when estimating the thinning parameters in INAR(p) models; we state the superiority of model-based INAR bootstrap approaches on block bootstrap in terms of low bias and Mean Square Error. Then we adopt the model-based bootstrap methods to obtain coherent predictions and confidence intervals in order to avoid difficulty in deriving the distributional properties. Finally, we present an empirical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. It is worth citing the work of McCabe et al. (2011) which estimate the forecast distribution non-parametrically within the context of the integer auto-regressive class of models and derive efficient probabilistic forecasts. To assess sampling variation in the full estimated forecast distribution, the authors use a subsampling method and prove its validity. Their approach is similar to that of Politis et al. (1999) and it is different from that we propose.

  2. For the other several variants of block bootstrap and further details, see Kreiss and Lahiri (2012) and the reference therein.

  3. As in the case of the IID bootstrap, the BB sample size is typically chosen to be of the same order as the original sample size. If b is not integer but denotes the smallest integer such that \(b l \ge n\), then one may select b blocks to generate the BB samples, and use only the first n values (Lahiri 2003, p. 26).

  4. Our approach differs from Cardinal et al. (1999) and Kim and Park (2008) approach in the computation of the residuals. In particular, they compute the residuals as:

    $$\begin{aligned} \hat{\varepsilon }_t = x_t - \sum _{i=1}^{p} \hat{\alpha }_i x_{t-i} \end{aligned}$$

    for \(t=p+1, \ldots , n,\) where \(\sum _{i=1}^{p} \hat{\alpha }_i x_{t-i}\) is the estimated conditional expectation of \(X_t,\) then consider the modified residuals defined by \(\tilde{\varepsilon }_t=[\hat{\varepsilon }_t]\) where \([\cdot ]\) represents the value rounded to the nearest integer.

References

  • Al-Osh MA, Alzaid AA (1987) First order integer-valued autoregressive INAR(1) process. J Time Ser Anal 8(3):261–275

    Article  MathSciNet  Google Scholar 

  • Al-Osh MA, Alzaid AA (1988) Integer valued moving average (INMA) process. Stat Pap 29:281–300

    Article  MathSciNet  Google Scholar 

  • Alzaid AA, Al-Osh MA (1990) An integer-valued ph-order autoregressive structure INAR(p) process. J Appl Probab 27:314–323

    Article  MathSciNet  Google Scholar 

  • Awale M, Balakrishna N, Ramanathan T (2017) Testing the constancy of the thinning parameter in a random coefficient integer autoregressive model. Stat Pap. https://doi.org/10.1007/s00362-017-0884-x

    Article  Google Scholar 

  • Bouzar N, Jayakumar K (2008) Time series with discrete semi-stable marginals. Stat Pap 49:619–635

    Article  Google Scholar 

  • Bu R, McCabe B (2008) Model selection, estimation and forecasting in INAR(p) models: a likelihood-based markov chain approach. Int J Forecast 24:151–162

    Article  Google Scholar 

  • Bu R, McCabe B, Hadri K (2008) Maximum likelihood estimation of higher-order integer-valued autoregressive process. J Time Ser Anal 29:973–994

    Article  MathSciNet  Google Scholar 

  • Cao R, Febrero-Bande M, Gonzalez-Manteiga W, Prada-Sanchez J, Garcfa-Jurado I (1997) Saving computer time in constructing consistent bootstrap prediction intervals for autoregressive processes. Commun Stat Simul Comput 26:961–978

    Article  MathSciNet  Google Scholar 

  • Cardinal M, Roy R, Lambert J (1999) On the application of integer-valued time series models for the analysis of disease incidence. Stat Med 18:2025–2039

    Article  Google Scholar 

  • Chatfield C (2000) Time-series forecasting. Chapman & Hall, London

    Book  Google Scholar 

  • Clements M, Kim J (2007) Bootstrap prediction intervals for autoregressive time series. Comput Stat Data Anal 51:3580–3594

    Article  MathSciNet  Google Scholar 

  • Clements M, Taylor N (2001) Bootstrapping prediction intervals for autoregressive models. Int J Forecast 17:247–267

    Article  Google Scholar 

  • Drost F, van den Akker R, Werker BJM (2009) Efficient estimation of autoregression parameters and innovation distributions for semiparametric interger-valued AR(p) models. J R Stat Soc Ser B 71:467–485

    Article  Google Scholar 

  • Du JG, Li Y (1991) The integer-valued autoregressive INAR(p) model. J Time Ser Anal 12:129–142

    Article  MathSciNet  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  MathSciNet  Google Scholar 

  • Freedman D (1981) Bootstrapping regression models. Ann Stat 9:1218–1228

    Article  MathSciNet  Google Scholar 

  • Freeland RK, McCabe BPM (2004a) Analysis of low count time series data by poisson autoregression. J Time Ser Anal 25:701–722

    Article  MathSciNet  Google Scholar 

  • Freeland RK, McCabe BPM (2004b) Forecasting discrete valued low count time series. Int J Forecast 20:427–434

    Article  Google Scholar 

  • Gelman A, Hwang J, Vehtari A (2014) Understanding predictive information criteria for bayesian models. Stat Comput 24:997–1016

    Article  MathSciNet  Google Scholar 

  • Jentsch C, Weiß C (2018) Bootstrapping INAR models. Bernoulli (to appear)

  • Jung RC, Tremayne AR (2006) Coherent forecasting in integer time series models. Int J Forecast 22:223–238

    Article  Google Scholar 

  • Khoo W, Ong S, Biswas A (2017) Modeling time series of counts with a new class of inar(1) model. Stat Pap 58:393–416

    Article  MathSciNet  Google Scholar 

  • Kim HY, Park Y (2008) A non-stationary integer-valued autoregressive model. Stat Pap 49:485–502

    Article  MathSciNet  Google Scholar 

  • Kim HY, Park Y (2010) Coherent forecasting in binomial AR(p) model. Commun Stat Appl Methods 17:27–37

    Google Scholar 

  • Kreiss JP, Lahiri SN (2012) Bootstrap methods for time series. Time Ser Anal Methods Appl 30:3–26

    Google Scholar 

  • Künsch H (1989) The jackknife and the bootstrap for general stationary observations. Ann Stat 17:1217–1241

    Article  MathSciNet  Google Scholar 

  • Lahiri S (2003) Model-based bootstrap. Springer New York, New York, pp 199–220

    MATH  Google Scholar 

  • Liu RY, Singh K (1992) Moving blocks jackknife and bootstrap capture weak dependence. In: LePage R, Billard L (eds) Exploring the limits of bootstrap. Wiley, New York

    Google Scholar 

  • Liu T, Yuan X (2013) Random rounded integer-valued autoregressive conditional heteroskedastic process. Stat Pap 54:645–683

    Article  MathSciNet  Google Scholar 

  • MacKinnon J, Smith A (1998) Approximate bias correction in econometrics. J Econom 85:205–230

    Article  MathSciNet  Google Scholar 

  • McCabe BPM, Martin GM, Harris D (2011) Efficient probabilistic forecasts for counts. J R Stat Soc 73:253–272

    Article  MathSciNet  Google Scholar 

  • McKenzie E (1985) Some simple models for discrete variate time series. Water Resour Bull 21:645–650

    Article  Google Scholar 

  • Politis DN, Romano JP, Wolf M (1999) Subsampling. Springer, New York

    Book  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Scotto M, Weiß C, Gouveia S (2015) Thinning based models in the analysis of integer-valued time series: a review. Stat Model 15:590–618

    Article  MathSciNet  Google Scholar 

  • Sun J, McCabe B (2013) Score statistics for testing serial dependence in count data. J Time Ser Anal 34:315–329

    Article  MathSciNet  Google Scholar 

  • Weiß C (2008) Thinning operations for modeling time series of counts: a survey. AStA Adv Stat Anal 92:319–341

    Article  MathSciNet  Google Scholar 

  • Weiß C (2013) Integer-valued autoregressive models for counts showing underdispersion. J Appl Stat 40(9):1931–1948

    Article  MathSciNet  Google Scholar 

  • Weiß C, Homburg A, Puig P (2016) Testing for zero inflation and overdispersion in INAR(1) models. Stat Pap. https://doi.org/10.1007/s00362-016-0851-y

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Bisaglia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisaglia, L., Gerolimetto, M. Model-based INAR bootstrap for forecasting INAR(p) models. Comput Stat 34, 1815–1848 (2019). https://doi.org/10.1007/s00180-019-00902-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-019-00902-1

Keywords

Navigation