Skip to main content

Advertisement

Log in

A class of percentile modified Lepage-type tests

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

The two-sample problem usually tests for a difference in location. However, there are many situations, for example in biomedicine, where jointly testing for difference in location and variability may be more appropriate. Moreover, heavy-tailed data, outliers and small-sample sizes are common in biomedicine and in other fields. These considerations make the use of nonparametric methods more appealing than parametric ones. The aim of the paper is to contribute to the literature about nonparametric simultaneous location and scale testing. More precisely, several existing tests are generalized and unified, and a new class of tests based on the Mahalanobis distance between the percentile modified test statistics for location and scale differences is introduced. The asymptotic distributions of the test statistics are obtained, and small-sample size behaviour of the tests is studied and compared to other tests via Monte Carlo simulations. It is shown that the proposed class of tests performs well when there are differences in both location and variability. A practical application is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansari AR, Bradley RA (1960) Rank-sum tests for dispersions. Ann Math Stat 31:1174–1189

    Article  MathSciNet  MATH  Google Scholar 

  • Box GEP (1953) Non-normality and tests on variances. Biometrika 40:318–335

    Article  MathSciNet  MATH  Google Scholar 

  • Brownie C, Boos DD, Hughes-Oliver J (1990) Modifying the t and ANOVA F tests when treatment is expected to increase variability relative to controls. Biometrics 46:259–266

    Article  MathSciNet  MATH  Google Scholar 

  • Büning H (1991) Robuste und adaptive tests. DeGruyter, Berlin

    Book  MATH  Google Scholar 

  • Büning H, Kössler W (1999) The asymptotic power of Jonckheere-Type tests for ordered alternatives. Aust N Z J Stat 41:67–78

    Article  MathSciNet  MATH  Google Scholar 

  • Büning H, Thadewald T (2000) An adaptive two-sample location-scale test of Lepage-type for symmetric distributions. J Stat Comput Simul 65:287–310

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng SW, Thaga K (2006) Single variables control charts: an overview. Qual Reliab Eng Int 22:811–820

    Article  Google Scholar 

  • Chernoff H, Savage IR (1958) Asymptotic normality and efficiency of certain nonparametric test statistics. Ann Math Stat 29:972–994

    Article  MathSciNet  MATH  Google Scholar 

  • Choi KS, Moon JY, Kim DW, Byun HR, Kripalani RH (2010) The significant increase of summer rainfall occurring in Korea from 1998. Theoret Appl Climatol 102:275–286

    Article  Google Scholar 

  • Chowdhury S, Mukherjee A, Chakraborti S (2014) A new distribution-free control chart for joint monitoring of location and scale parameters of continuous distributions. Qual Reliab Eng Int 30:191–204

    Article  Google Scholar 

  • Chowdhury S, Mukherjee A, Chakraborti S (2015) Qual Reliab Eng Int 31:135–151

    Article  Google Scholar 

  • Cucconi O (1968) Un nuovo test non parametrico per il confronto tra due gruppi campionari. Giornale degli Economisti 27:225–248

    Google Scholar 

  • Duran BS, Tsai WS, Lewis TO (1976) A class of location-scale nonparametric tests. Biometrika 63:173–176

    MathSciNet  MATH  Google Scholar 

  • Friedrich S, Brunner E, Pauly M (2017) Permuting longitudinal data in spite of the dependencies. J Multivar Anal 153:255–265

    Article  MathSciNet  MATH  Google Scholar 

  • Gastwirth JL (1965) Percentile modifications of two sample rank tests. J Am Stat Assoc 60:1127–1141

    Article  MathSciNet  MATH  Google Scholar 

  • Gibbons JD, Chakraborti S (2011) Nonparametric statistical inference, 5th edn. CRC Press, Boka Raton Florida

    MATH  Google Scholar 

  • Groeneveld RA, Meeden G (1984) Measuring skewness and kurtosis. The Statistician 33:391–399

    Article  Google Scholar 

  • Hájek J, Šidák Z, Sen PK (1998) Theory of rank tests, 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  • Janssen A (1997) Studentized permutation permutation tests for non-i.i.d hypotheses and the generalized Behrens-Fisher problem. Stat Probab Lett 36:9–21

    Article  MathSciNet  MATH  Google Scholar 

  • Janssen A (1999) Testing nonparametric statistical functionals with applications to rank tests. J Stat Plan Inference 81:71–93

    Article  MathSciNet  MATH  Google Scholar 

  • Kontopantelis E, Reeves D (2012) Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a simulation study. Stat Methods Med Res 21:409–426

    Article  MathSciNet  Google Scholar 

  • Kössler, W (2006) Asymptotic Power and Efficiency of Lepage-Type Tests for the Treatment of Combined Location-Scale Alternatives. Informatik-Bericht Nr. 200, Humboldt-Universität zu Berlin, 1-26. https://edoc.hu-berlin.de/handle/18452/3114. Accessed 22 Oct 2016

  • Kössler W, Kumar N (2010) An adaptive test for the two-sample scale problem based on U-statistics. Commun Stat Simul Comput 39:1785–1802

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann EL (2009) Parametric versus nonparametrics: two alternative methodologies. J Nonparametric Stat 21:397–405

    Article  MathSciNet  MATH  Google Scholar 

  • Lepage Y (1971) A combination of Wilcoxon’s and Ansari-Bradley’s statistics. Biometrika 58:213–217

    Article  MathSciNet  MATH  Google Scholar 

  • Ludbrook J, Dudley H (1998) Why permutation tests are superior to t and F tests in biomedical research. The Am Stat 52:127–132

    Google Scholar 

  • Marozzi M (2004) A Bi-aspect nonparametric test for the two-sample location problem. Comput Stat Data Anal 44:639–648

    Article  MathSciNet  MATH  Google Scholar 

  • Marozzi M (2013) Nonparametric simultaneous tests for location and scale testing: a comparison of several methods. Commun Stat Simul Comput 42:1298–1317

    Article  MathSciNet  MATH  Google Scholar 

  • Marozzi M (2014) The multisample cucconi test. Stat Methods Appl 23:209–227

    Article  MathSciNet  MATH  Google Scholar 

  • Marozzi M (2015) Multivariate multidistance tests for high-dimensional low sample size case-control studies. Stat Med 34:1511–1526

    Article  MathSciNet  Google Scholar 

  • McCracken AK, Chakraborti S (2013) Control charts for joint monitoring of mean and variance: an overview. Qual Technol Quant Manag 10:17–35

    Article  Google Scholar 

  • Miller RG (1968) Jackknifing variances. Ann Math Stat 39:567–582

    Article  MathSciNet  MATH  Google Scholar 

  • Muccioli C, Belford R, Podgor M, Sampaio P, de Smet M, Nussenblatt R (1996) The diagnosis of intraocular inflammation and cytomegalovirus retinitis in HIV-infected patients by laser flare photometry. Ocular Immunol Inflamm 4:75–81

    Article  Google Scholar 

  • Mukherjee A (2017) Distribution-free phase-II exponentially weighted moving average schemes for joint monitoring of location and scale based on subgroup samples. Int J Adv Manuf Technol 92:101–116

    Article  Google Scholar 

  • Murakami H (2007) Lepage type statistic based on the modified Baumgartner statistic. Comput Stat Data Anal 51:5061–5067

    Article  MathSciNet  MATH  Google Scholar 

  • Neuhäuser M (2000) An exact two-sample test based on the Baumgartner-Weiss-Schindler statistic and a modification of Lepage’s test. Commun Stat Theory Methods 29:161–168

    Article  MathSciNet  MATH  Google Scholar 

  • Neuhäuser M, Senske R (2004) The Baumgartner-Weiss-Schindler test for the detection of differentially expressed genes in replicated microarray experiments. Bionformatics 20:3553–3564

    Article  Google Scholar 

  • Niu C, Guo X, Xu W, Zhu L (2014) Testing equality of shape parameters in several inverse Gaussian populations. Metrika 77:795–809

    Article  MathSciNet  MATH  Google Scholar 

  • Pauly M (2011) Discussion about the quality of F-ratio resampling tests for comparing variances. Test 20:163–179

    Article  MathSciNet  MATH  Google Scholar 

  • Pauly M, Asendorf T, Konietschke F (2016) Permutation-based inference for the AUC: a unified approach for continuous and discontinuous data. Biometrical J 58:1319

    Article  MathSciNet  MATH  Google Scholar 

  • Pesarin F, Salmaso L (2010) Permutation tests for complex data. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Podgor MJ, Gastwirth JL (1994) On non-parametric and generalized tests for the two-sample problem with location and scale change alternatives. Stat Med 13:747–758

    Article  Google Scholar 

  • Puri ML, Sen PK (1971) Nonparametric methods in multivariate analysis. Wiley, New York

    MATH  Google Scholar 

  • Randles RH, Hogg RV (1971) Certain uncorrelated and independent rank statistics. J Am Stat Assoc 66:569–574

    Article  MATH  Google Scholar 

  • Rice KL, Rubins JB, Lebahn F, Parenti CM, Duane PG, Kuskowski M, Joseph AM, Niewoehner DE (2000) Withdrawal of chronic systemic corticosteroids in patients with COPD. Am J Respir Crit Care Med 162:174–178

    Article  Google Scholar 

  • Romano JP, Wolf M (1999) Subsampling inference for the mean in the heavy-tailed case. Metrika 50:55–69

    Article  MathSciNet  MATH  Google Scholar 

  • Sheil J, O’Muircheartaigh I (1977) Algorithm AS106: the distribution of non-negative quadratic forms in normal variables. Appl Stat 26:92–98

    Article  Google Scholar 

  • Tiku ML, Tan WY, Balakrishnan N (1986) Robust inference. Marcel Dekker, New York

    MATH  Google Scholar 

  • Umlauft M, Konietschke F, Pauly M (2017) Rank-based permutation approaches for non-parametric factorial designs. Br J Math Stat Psychol 70:368–390

    Article  MATH  Google Scholar 

  • Zhang J, Mu X, Xia Y, Martin FL, Hang W, Liu L, Tian M, Huang Q, Shen H (2014) Metabolomic analysis reveals a unique urinary pattern in normozoospermic infertile men. J Proteome Res 13:3088–3099

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Marozzi.

Ethics declarations

Conflict of interest

All authors declares that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 185 kb)

Appendix 1

Appendix 1

Lemma 1

Under\( H_{0} \), first and second moments of\( T_{p} \)and\( B_{r} \)are

  1. (i)
    $$ E\left( {T_{p} } \right) = \left\{ {\begin{array}{*{20}l} {\frac{{mP\left( {P + 1} \right)}}{2N}} \hfill &\quad {{\text{if}}\;N\;{\text{is}}\;{\text{odd}}} \hfill \\ {\frac{{mP^{2} }}{2N}} \hfill &\quad {{\text{if}}\;N\;{\text{is}}\;{\text{even}}} \hfill \\ \end{array} } \right.\quad {\text{and}}\quad E\left( {B_{r} } \right) = \left\{ {\begin{array}{*{20}l} {\frac{{mR\left( {R + 1} \right)}}{2N}} \hfill &\quad {{\text{if}}\;N\;{\text{is}}\;{\text{odd}}} \hfill \\ {\frac{{mR^{2} }}{2N}} \hfill &\quad {{\text{if}}\;N\;{\text{is}}\;{\text{even}}} \hfill \\ \end{array} ;} \right. $$
  2. (ii)
    $$ Var\left( {T_{p} } \right) = \left\{ {\begin{array}{*{20}l} {\frac{{mnP\left( {P + 1} \right)}}{{12N^{2} \left( {N - 1} \right)}}\left[ {4NP + 2N - 3P\left( {P + 1} \right)} \right]} \hfill & {{\text{if}}\;N\;{\text{is}}\;{\text{odd}}} \hfill \\ {\frac{mnP}{{12N^{2} \left( {N - 1} \right)}}\left[ {4NP^{2} - 3P^{3} - N} \right]} \hfill & {{\text{if}}\;N\;{\text{is}}\;{\text{even}}} \hfill \\ \end{array} } \right.; $$
  3. (iii)
    $$ Var\left( {B_{r} } \right) = \left\{ {\begin{array}{*{20}l} {\frac{{mnR\left( {R + 1} \right)}}{{12N^{2} \left( {N - 1} \right)}}\left[ {4NR + 2N - 3R\left( {R + 1} \right)} \right]} \hfill & {{\text{if}}\;N\;{\text{is}}\;{\text{odd}}} \hfill \\ {\frac{mnR}{{12N^{2} \left( {N - 1} \right)}}\left[ {4NR^{2} - 3R^{3} - N} \right]} \hfill & {{\text{if}}\;N\;{\text{is}}\;{\text{even}}} \hfill \\ \end{array} } \right.; $$
$$ COV\left( {T_{p} ,B_{r} } \right) = \left\{ {\begin{array}{*{20}l} { - \frac{{mnPR\left( {P + 1} \right)\left( {R + 1} \right)}}{{4N^{2} \left( {N - 1} \right)}}} \hfill & {{\text{if}}\;N\;{\text{is}}\;{\text{odd}}} \hfill \\ { - \frac{{mnP^{2} R^{2} }}{{4N^{2} \left( {N - 1} \right)}}} \hfill & {{\text{if}}\;N\;{\text{is}}\;{\text{even}}} \hfill \\ \end{array} } \right.. $$

Proof

  1. (i)

    See Gastwirth (1965).

Proofs of parts (ii) and (iii) are not given by Gastwirth (1965), they are reported below.

  1. (ii)

    We prove that under \( {H_{0} ,\; V\left( {T_{p} } \right) = \frac{{mnP\left( {P + 1} \right)}}{{12N^{2} \left( {N - 1} \right)}}\left( {4NP + 2N - 3P\left( {P + 1} \right)} \right)^{2} \; {\text{if}}}\; N\) is odd. \( E\left( {T_{p}^{2} } \right) \) is needed. Note that

    $$ \begin{aligned} T_{p}^{2} & = \left( {\mathop \sum \limits_{i = N - P + 1}^{N} \left( {i - \left( {N - P} \right)} \right)\lambda_{i} } \right)^{2} \\ & = \mathop \sum \limits_{i = N - P + 1}^{N} \left( {i - \left( {N - P} \right)} \right)^{2} \lambda_{i}^{2} + \mathop \sum \limits_{i = N - P + 1}^{N} \mathop \sum \limits_{i = N - P + 1,i \ne j}^{N} \left( {i - \left( {N - P} \right)} \right)\left( {j - \left( {N - P} \right)} \right)\lambda_{i} \lambda_{j}. \\ \end{aligned} $$

    Therefore

    $$ \begin{aligned} E\left( {T_{p}^{2} } \right) & = \mathop \sum \limits_{i = N - P + 1}^{N} \left( {i - \left( {N - P} \right)} \right)^{2} E\left( {\lambda_{i}^{2} } \right) + \mathop \sum \limits_{i = N - P + 1}^{N} \mathop \sum \limits_{i = N - P + 1,i \ne j}^{N} \left( {i - \left( {N - P} \right)} \right)\left( {j - \left( {N - P} \right)} \right)E\left( {\lambda_{i} \lambda_{j} } \right) \\ & = \frac{{P\left( {P + 1} \right)\left( {2P + 1} \right)m}}{6N} + \frac{{m\left( {m - 1} \right)}}{{N\left( {N - 1} \right)}}\frac{{P\left( {P + 1} \right)\left( {3P^{2} - P - 2} \right)}}{12}. \\ \end{aligned} $$

    Since under H0, \( E\left( {\lambda_{i}^{2} } \right) = \frac{m}{N} \,{\text{and}}\, E\left( {\lambda_{i} \lambda_{j} } \right) = \frac{{m\left( {m - 1} \right)}}{{N\left( {N - 1} \right)}} \) then the result follows. The proofs for \( N \) even is very similar. Also the proofs for \( V\left( {B_{r} } \right) \) (for odd and even \( N \)) under \( H_{0} \) are very similar and therefore omitted.

  2. (iii)

    We prove that under \( H_{0} ,\quad COV\left( {T_{p} ,B_{r} } \right) = - \frac{{mnPR\left( {P + 1} \right)\left( {R + 1} \right)}}{{4N^{2} \left( {N - 1} \right)}}\quad {\text{if}}\;N\;{\text{is}}\;{\text{odd}} \). \( E\left( {T_{p} B_{r} } \right) \) is needed. Note that

    $$ \begin{aligned} T_{p} B_{r} & = \mathop \sum \limits_{i = N - P + 1}^{N} \left( {i - \left( {N - P} \right)} \right)\lambda_{i} \mathop \sum \limits_{J = 1}^{R} \left( {R - j + 1} \right)\lambda_{j} \\ & = \mathop \sum \limits_{i = N - P + 1}^{N} \mathop \sum \limits_{J = 1}^{R} \left( {\left( {R + 1} \right)i + \left( {N - P} \right)j - ij - \left( {N - P} \right)\left( {R + 1} \right)} \right)\lambda_{i} \lambda_{j} . \\ \end{aligned} $$

    Therefore

    $$ E\left( {T_{p} B_{r} } \right) = \mathop \sum \limits_{i = N - P + 1}^{N} \mathop \sum \limits_{J = 1}^{R} \left( {\left( {R + 1} \right)i + \left( {N - P} \right)j - ij - \left( {N - P} \right)\left( {R + 1} \right)} \right)E\left( {\lambda_{i} \lambda_{j} } \right). $$

    Since under \( H_{0} \;E\left( {\lambda_{i} \lambda_{j} } \right) = \frac{{m\left( {m - 1} \right)}}{{N\left( {N - 1} \right)}} \) then

    $$ E\left( {T_{p} B_{r} } \right) = \frac{{m\left( {m - 1} \right)PR\left( {P + 1} \right)\left( {R + 1} \right)}}{{4N\left( {N - 1} \right)}}, $$

    and consequently,

    $$ COV\left( {T_{p} ,B_{r} } \right) = - \frac{{mnPR\left( {P + 1} \right)\left( {R + 1} \right)}}{{4N^{2} \left( {N - 1} \right)}}. $$

    The proof for \( N \) even is very similar and therefore omitted.

Lemma 2

Under \( H_{0} \) first and second moments of \( W \) and \( S \) are given by

  1. (i)
    $$ \mu_{W} = E\left[ W \right] = E\left[ {T_{p} } \right] - E\left[ {B_{r} } \right] = \left\{ {\begin{array}{*{20}l} {\frac{{m\left( {P - R} \right)\left( {P + R + 1} \right)}}{2N}} \hfill & {{\text{when}}\;N\;{\text{is}}\;{\text{odd}}} \hfill \\ {\frac{{m\left( {P - R} \right)\left( {P + R} \right)}}{2N}} \hfill & {{\text{when}}\;N\;{\text{is}}\;{\text{even}}} \hfill \\ \end{array} } \right. $$
    $$ \mu_{S} = E\left[ S \right] = E\left[ {T_{p} } \right] + E\left[ {B_{r} } \right] = \left\{ {\begin{array}{*{20}l} {\frac{{m\left( {P^{2} + R^{2} + P + R} \right)}}{2N}} \hfill & {{\text{when}}\;N\;{\text{is}}\;{\text{odd}}} \hfill \\ {\frac{{m\left( {P^{2} + R^{2} } \right)}}{2N}} \hfill & {{\text{when}}\;N\;{\text{is}}\;{\text{even}}} \hfill \\ \end{array} } \right. $$
  2. (ii)
    $$ \begin{aligned} \sigma_{W}^{2} & = Var\left[ W \right] = Var\left[ {T_{p} } \right] + Var\left[ {B_{r} } \right] - 2Cov\left( {T_{p} ,B_{r} } \right) \\ & = \left\{ {\begin{array}{*{20}l} {\frac{{mn\left\{ {\left( {4N - 6} \right)\left( {P^{3} + R^{3} } \right) + \left( {6N - 3} \right)\left( {P^{2} + R^{2} } \right) + 2N\left( {P + R} \right) - 3\left( {P^{4} + R^{4} } \right) + 6PR\left( {P + 1} \right)\left( {R + 1} \right)} \right\}}}{{12N^{2} \left( {N - 1} \right)}}} \hfill & {{\text{when}}\;N\;{\text{is}}\;{\text{odd}}} \hfill \\ {\frac{{mn\left\{ {\left( {4N - 6} \right)\left( {P^{3} + R^{3} } \right) - 3\left( {P^{4} + R^{4} } \right) - N\left( {P + R} \right) + 6P^{2} R^{2} } \right\}}}{{12N^{2} \left( {N - 1} \right)}}} \hfill & {{\text{when}}\;N\;{\text{is}}\;{\text{even}}} \hfill \\ \end{array} } \right. \\ \end{aligned} $$
    $$ \begin{aligned} \sigma_{S}^{2} & = Var\left[ S \right] = Var\left[ {T_{p} } \right] + Var\left[ {B_{r} } \right] + 2Cov\left( {T_{p} ,B_{r} } \right) \\ & = \left\{ {\begin{array}{*{20}l} {\frac{{mn\left\{ {\left( {4N - 6} \right)\left( {P^{3} + R^{3} } \right) + \left( {6N - 3} \right)\left( {P^{2} + R^{2} } \right) + 2N\left( {P + R} \right) - 3\left( {P^{4} + R^{4} } \right) - 6PR\left( {P + 1} \right)\left( {R + 1} \right)} \right\}}}{{12N^{2} \left( {N - 1} \right)}}} \hfill & {{\text{when}}\;N\;{\text{is}}\;{\text{odd}}} \hfill \\ {\frac{{mn\left\{ {\left( {4N - 6} \right)\left( {P^{3} + R^{3} } \right) - 3\left( {P^{4} + R^{4} } \right) - N\left( {P + R} \right) - 6P^{2} R^{2} } \right\}}}{{12N^{2} \left( {N - 1} \right)}}} \hfill & {{\text{when}}\;N\;{\text{is}}\;{\text{even}}} \hfill \\ \end{array} } \right. \\ \end{aligned} $$
  3. (iii)
    $$ \begin{aligned} Cov\left( {W,S} \right) & = \sigma_{WS} = Var\left[ {T_{p} } \right] - Var\left[ {B_{r} } \right] \\ & = \left\{ {\begin{array}{*{20}l} {\frac{{mn\left\{ {\left( {4N - 6} \right)\left( {P^{3} - R^{3} } \right) + \left( {6N - 3} \right)\left( {P^{2} - R^{2} } \right) + 2N\left( {P - R} \right) - 3\left( {P^{4} - R^{4} } \right)} \right\}}}{{12N^{2} \left( {N - 1} \right)}}} \hfill & {{\text{when}}\;N\;{\text{is}}\;{\text{odd}}} \hfill \\ {\frac{{mn\left\{ {4N\left( {P^{3} - R^{3} } \right) - N\left( {P - R} \right) - 3\left( {P^{4} - R^{4} } \right)} \right\}}}{{ 12N^{2} \left( {N - 1} \right)}}} \hfill & {{\text{when}}\;N\;{\text{is}}\;{\text{even}}} \hfill \\ \end{array} } \right.. \\ \end{aligned} $$

Proof

Straightforward using results in Lemma 1.

To prove Theorem 1 we use the following Lemma 3.

Lemma 3

As\( N \to \infty \), under H0

$$ W^{*} = \frac{{\left( {W - \mu_{W} } \right)}}{{\sigma_{W} }}\mathop \to \limits^{d}N\left( {0,1} \right)\quad {\text{and}}\quad S^{*} = \frac{{\left( {S - \mu_{S} } \right)}}{{\sigma_{S} }}\mathop \to \limits^{d}N\left( {0,1} \right) $$

where\( \mathop \to \limits^{d} \)stands for convergence in distribution.

Proof

Note that in either case the score functions \( U_{W} \left( u \right) \) and \( U_{S} \left( u \right) \) corresponding to W and S respectively are continuous, differentiable (except at two points) in the interval [0,1], square integrable and are bounded. Therefore we can apply the Chernoff-Savage (1958) theorem and prove the lemma. Two special cases, one with \( p = r = 0.25 \) and the other with \( p = r = 0.5 \) are discussed in Büning and Thadewald (2000).

Proof of Theorem 1

Consider the linear combination \( a_{1} W^{*} + a_{2} S^{*} \) where \( a_{1} \) and \( a_{2} \) are two real numbers. It is \( a_{1} W^{*} + a_{2} S^{*} = \left( {\frac{{a_{1} }}{{\sigma_{W} }}W + \frac{{a_{2} }}{{\sigma_{S} }}S} \right) - \left( {\frac{{a_{1} \mu_{W} }}{{\sigma_{W} }} + \frac{{a_{2} \mu_{S} }}{{\sigma_{S} }}} \right) = \left( {\frac{{a_{1} }}{{\sigma_{W} }} + \frac{{a_{2} }}{{\sigma_{S} }}} \right)T_{p} + \left( {\frac{{a_{2} }}{{\sigma_{S} }} - \frac{{a_{1} }}{{\sigma_{W} }}} \right)B_{r} - \left( {\frac{{a_{1} \mu_{W} }}{{\sigma_{W} }} + \frac{{a_{2} \mu_{S} }}{{\sigma_{S} }}} \right), \) and the corresponding score function can be expressed as

$$ U_{{a_{1} W^{*} + a_{2} S^{*} }} \left( u \right) = \left\{ {\begin{array}{*{20}l} {\left( {\frac{{a_{2} }}{{\sigma_{S} }} - \frac{{a_{1} }}{{\sigma_{W} }}} \right)\left[ {u - r} \right]} \hfill &\quad {{\text{if}}\quad 0 < u < r} \hfill \\ 0 \hfill &\quad {{\text{if}}\quad r \le u \le \left( {1 - p} \right)} \hfill \\ {\left( {\frac{{a_{1} }}{{\sigma_{W} }} + \frac{{a_{2} }}{{\sigma_{S} }}} \right)\left[ {u - \left( {1 - p} \right)} \right]} \hfill &\quad {{\text{if}}\quad \left( {1 - p} \right) < u < 1} \hfill \\ \end{array} } \right.. $$

Here also, the score function is continuous, differentiable (except at two points) in the interval [0,1], square integrable and bounded and therefore the Chernoff-Savage theorem can be applied to conclude that as \( N \to \infty \), for any arbitrary real numbers \( a_{1} \) and \( a_{2} \), under H0

$$ a_{1} W^{*} + a_{2} S^{*} \mathop \to \limits^{d} N\left( {0, a_{1}^{2} + a_{2}^{2} + 2a_{1} a_{2} \rho_{WS} } \right) $$

where \( \rho_{WS} = \frac{{\sigma_{WS} }}{{\sigma_{W} \sigma_{S} }}. \) Since an arbitrary linear combination of \( W^{*} \) and \( S^{*} \) converges in distribution to the normal, then using the Cramér-Wold device we conclude that the joint distribution of \( W^{*} \) and \( S^{*} \) is a bivariate normal with mean vector \( {\mathbf{0}} = \left( {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \right) \) and dispersion matrix \( \varSigma = \left( {\begin{array}{*{20}c} 1 & {\rho_{WS} } \\ {\rho_{WS} } & 1 \\ \end{array} } \right) \). Noting that

$$ \mathop {\lim }\limits_{n \to \infty } f\left( {W^{*} , S^{*} } \right) = \frac{1}{{2\pi \sqrt {1 - \rho_{WS}^{2} } }}e^{{ - \frac{{PML\left( {p,r} \right)}}{2}}} $$

where \(f(W^*,S^*)\) denotes the density function of \( \left( {W^{*} , S^{*} } \right) \), we conclude that \( PML\left( {p,r} \right) \) is asymptotically distributed as a Chi squared with 2 d.f.

Proof of Theorem 2

We follow Kössler (2006). Suppose \( \theta = \left( {\mu ,\vartheta } \right) \) and the c.d.f. \( F \) twice continuously differentiable. Using Taylor expansion, and neglecting higher order terms in \( \left\| {\theta } \right\| \); we have

$$ \begin{aligned} F\left( {x;\mu ,\vartheta } \right) \approx F\left( {\frac{x - \mu }{{e^{\vartheta } }}} \right) & = F\left( {x; 0, 0} \right) + \left. {\mu \frac{\partial }{\partial \mu }F\left( {x;\mu ,\vartheta } \right)} \right|_{\theta = 0} + \left. {\vartheta \frac{\partial }{\partial \vartheta }F\left( {x;\mu ,\vartheta } \right)} \right|_{\theta = 0} \\ & = F\left( {x; 0, 0} \right) - \mu f\left( x \right) - \vartheta xf\left( x \right) \\ \end{aligned} $$

Now, asymptotic normality of W and S follows from the Chernoff-Savage theorem (e.g. Puri and Sen (1971, Sect. 3.6)) and the expectations of \( W \) and \( S \), are given by:

$$ \begin{aligned} E\left( W \right) & = \mu_{W} + m\mathop \int \limits_{ - \infty }^{\infty } U_{W} \left( {\frac{m}{N}F\left( x \right) + \frac{n}{N}F\left( {\frac{{x - \mu_{N} }}{{e^{{\vartheta_{N} }} }}} \right)} \right)dF\left( x \right) \\ & \approx \mu_{W} + m\left[ {\mathop \int \limits_{0}^{1} U_{W} \left( u \right)du - \frac{n}{N}\mathop \int \limits_{ - \infty }^{\infty } U_{W}^{'} \left( {F\left( x \right)) f\left( x \right)\left( {\mu_{N} + \vartheta_{N} x} \right)} \right)dF\left( x \right)} \right] \\ & = \mu_{W} - \frac{mn}{N}\mathop \int \limits_{0}^{1} U_{W}^{'} \left( u\right) f\left( {F^{ - 1} \left( u \right)} \right)\left(\mu_{N} + \vartheta_{N} F^{ - 1} \left( u \right) \right)du \\ & = \mu_{W} - \frac{mn}{N}\left[ {\mu_{N} d_{W} \left( {f,g_{1} } \right) + \vartheta_{N} d_{WS} \left( {f,g_{1} } \right)} \right], {\text{because }} {U_{W}^{'} \left( u \right) = 1.} \\ \end{aligned} $$

Similarly, we can show that

$$ E\left( S \right) = \mu_{S} - \frac{mn}{N}\left[ {\mu_{N} d_{SW} \left( {f,g_{2} } \right) + \vartheta_{N} d_{S} \left( {f,g_{2} } \right)} \right]. $$

Further, the variance of \( W \) and \( S \) are given by

$$ \sigma_{W}^{2} = \frac{mn}{N}I_{W} = \frac{mn}{N}\frac{{2\eta^{3} }}{3}\quad {\text{and}}\quad \sigma_{S}^{2} = \frac{mn}{N}I_{S} = \frac{mn}{N}\left( {\frac{{2\eta^{3} }}{3} - \eta^{4} } \right). $$

Since the score functions are orthogonal for \( p = r = \eta ; \) the proof follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Marozzi, M. A class of percentile modified Lepage-type tests. Metrika 82, 657–689 (2019). https://doi.org/10.1007/s00184-018-0700-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-018-0700-1

Keywords

Mathematics Subject Classification

Navigation