Skip to main content
Log in

Development of a voltammetric electronic tongue for discrimination of edible oils

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel strategy to perform cyclic voltammetric measurements with a platinum microelectrode directly in edible oil samples. The microelectrode was employed as an electronic tongue that, along with the application of chemometrics to the current–potential responses, proved useful for discriminating oils on the basis of their quality and geographical origin. The method proposed here is based on the use of suitable room temperature ionic liquids, added to oils as supporting electrolytes to provide conductivity to the low-polarity samples. The entire voltammograms, recorded directly on the oil/RTIL mixtures, were processed via principal component analysis and a classification technique (K nearest neighbors), to extract information on samples characteristics. Data processing showed that oils having different nature (i.e. maize and olive) or geographical origin (i.e. olive oils coming from different regions) can be distinguished.

A novel strategy to perform voltammetric measurements with a platinum microelectrode directly in edible oil samples is presented. The microelectrode is employed as an electronic tongue that, along with the application of chemometrics to the voltammetric responses, allows oil discrimination according to their quality and geographical origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vlasov Y, Legin A, Rudnitskaya A, Di Natale C, D’Amico A (2005) Pure Appl Chem 77:1965–1983

    Article  CAS  Google Scholar 

  2. Ciosek P, Wroblewski W (2007) Analyst 132:963–978

    Article  CAS  Google Scholar 

  3. Toko K (1996) Mater Sci Eng C 4:69–82

    Article  Google Scholar 

  4. Toko K (1998) Sens Update 3:131–158

    Article  CAS  Google Scholar 

  5. Vlasov Y, Legin A, Rudnitskaya A (2002) Anal Bioanal Chem 373:136–146

    Article  CAS  Google Scholar 

  6. Legin A, Rudnitskaya A, Lvova L, Vlasov Y, Di Natale C, D’Amico A (2003) Anal Chim Acta 484:33–44

    Article  CAS  Google Scholar 

  7. Parra V, Arrieta AA, Fernandez-Escudero JA, Rodriguez-Mendez ML, De Saja JA (2006) Sens Actuators, B 118:448–453

    Article  Google Scholar 

  8. Parra V, Arrieta AA, Fernandez-Escudero JA, Iniguez M, De Saja JA, Rodriguez-Mendez ML (2006) Anal Chim Acta 563:229–237

    Article  CAS  Google Scholar 

  9. Martina V, Ionescu K, Pigani L, Terzi F, Ulrici A, Zanardi C, Seeber R (2007) Anal Bioanal Chem 387:2101–2110

    Article  CAS  Google Scholar 

  10. Apetrei C, Apetrei IM, Nevares I, del Alamo M, Parra V, Rodriguez-Mendez ML, De Saja JA (2007) Electrochim Acta 52:2588–2594

    Article  CAS  Google Scholar 

  11. Cosio MS, Ballabio D, Benedetti S, Gigliotti C (2007) Food Chem 101:485–491

    Article  CAS  Google Scholar 

  12. Legin A, Rudnitskaya A, Lvova L, Vlasov Y, Di Natale C, Mazzone E, D’Amico A (2000) Sens Actuators B 65:232–234

    Article  Google Scholar 

  13. Ciosek P, Brzozka Z, Wroblewski W (2006) Sens Actuators B 118:454–460

    Article  Google Scholar 

  14. Ciosek P, Maminska R, Dybko A, Wroblewski W (2007) Sens Actuators B 127:8–14

    Article  Google Scholar 

  15. Ciosek P, Wroblewski W (2007) Talanta 71:738–746

    Article  CAS  Google Scholar 

  16. Buratti S, Benedetti S, Scampicchio M, Pangerod C (2004) Anal Chim Acta 525:133–139

    Article  CAS  Google Scholar 

  17. Scampicchio M, Benedetti S, Brunetti B, Mannino S (2006) Electroanalysis 18:1643–1648

    Article  CAS  Google Scholar 

  18. Mendonça CRB, Bica CID, Simo-Alfonso EF, Ramis-Ramos G, Piatnicki CMS (2008) J Braz Chem Soc 19:775–781

    Article  Google Scholar 

  19. Byun HG, Eom TK, Jung WK, Kim SK (2007) Biotechnol Bioprocess Eng 12:484–490

    Article  CAS  Google Scholar 

  20. Apetrei C, Rodriguez-Mendez ML, De Saja JA (2005) Sens Actuators B 111–112:403–409

    Article  Google Scholar 

  21. Apetrei C, Gutierez F, Rodriguez-Mendez ML, De Saja JA (2007) Sens Actuators B 121:567–575

    Article  Google Scholar 

  22. Zhang J, Bond AM (2005) Analyst 130:1132–1147

    Article  CAS  Google Scholar 

  23. Galinski M, Lewandowski A, Stepniak I (2006) Electrochim Acta 51:5567–5580

    Article  CAS  Google Scholar 

  24. Duffy NW, Bond AM (2006) Electrochem Comm 8:892–898

    Article  CAS  Google Scholar 

  25. Tsuda T, Hussey CL (2007) Interface 16:42–49

    Google Scholar 

  26. Hapiot P, Lagrost C (2008) Chem Rew 108:2238–2264

    Article  CAS  Google Scholar 

  27. Wightman RM, Wipf DO (1989) In: Bard AJ (ed) Electroanalytical chemistry. Marcel Dekker, New York, 15:267-353

  28. Montenegro MI, Queiros MI, Daschbach JL (1991) Microelectrodes: theory and applications. Kluwer, Dordrecht

    Google Scholar 

  29. Daniele S, Baldo MA, Bragato C (2008) Curr Anal Chem 4:215–228

    Article  CAS  Google Scholar 

  30. Stulik K, Amatore C, Holub K, Marecek V, Kutner W (2000) Pure Appl Chem 72:1483–1492

    Article  CAS  Google Scholar 

  31. Esteban M, Arino C, Diaz-Cruz JM (2006) Trends Anal Chem 25:86–92

    Article  CAS  Google Scholar 

  32. Vandeginste BGM, Massart DL, Buydens LMC, De Jong S, Lewi PJ, Smeyers-Verbeke J (1998) Supervised pattern recognition. In: Vandeginste BGM, Rutan SC (eds) Handbook of chemometrics and qualimetrics: part B. Elsevier, Amsterdam, pp 88–158 207-213, 236-237

    Google Scholar 

  33. Forina M, Lanteri S, Casolino C (2004) In: Nollet MLM (ed) Handbook of food analysis, 2nd edn. Marcel Dekker, New York, 3:1757-1804

  34. Forina M, Lanteri S, Armanino C, Casolino C, Casale M, Oliveri P (2008) V-PARVUS 2008, University of Genoa, Genoa. http://www.parvus.unige.it. Accessed 2 Jan 2008

  35. Harper AM, Duewer DL, Kowalski BR, Fashing JL (1977) In: Kowalski BR (ed) Chemometrics: Theory and Application, ACS Symposium Series 52, American Chemical Society, Washington, 14-52

  36. Dudoit S, Fridlyand J, Speed P (2002) J Am Stat Assoc 97:77–87

    Article  CAS  Google Scholar 

  37. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 3rd edn. Wiley, New York

    Google Scholar 

  38. Agui L, Lopez-Guzman JE, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM (1999) Anal Chim Acta 385:241–248

    Article  CAS  Google Scholar 

  39. Hernandez-Olmos MA, Agui L, Yanez-Sedeno P, Pingarron JM (2000) Electrochim Acta 46:289–296

    Article  CAS  Google Scholar 

  40. Hatzakis E, Dais P (2008) J Agric Food Chem 56:1866–1872

    Article  CAS  Google Scholar 

  41. Land LM, Li P, Bummer PM (2005) Pharm Res 22:784–788

    Article  CAS  Google Scholar 

  42. Cerretani L, Bendini A, Barbieri S, Lercker G (2008) Riv Ital Sostanze Grasse 85:75–82

    CAS  Google Scholar 

  43. Bracci T, Sebastiani L, Busconi M, Fogher C, Belaj A, Trujillo I (2009) Sci Hortic 122:209–215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Alvise Perosa of the Department of Environmental Science, University of Venice, for kindly providing the pure [TETDP]+[decanoate] ionic liquid. Financial support by the Ministry of University and Research (MUR) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Antonietta Baldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveri, P., Baldo, M.A., Daniele, S. et al. Development of a voltammetric electronic tongue for discrimination of edible oils. Anal Bioanal Chem 395, 1135–1143 (2009). https://doi.org/10.1007/s00216-009-3070-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3070-8

Keywords

Navigation