Skip to main content

Advertisement

Log in

Continuous flow analysis method for determination of soluble iron and aluminium in ice cores

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Iron and aluminium are the two most abundant metals on the Earth's crust, but they display quite different biogeochemical properties. While iron is essential to many biological processes, aluminium has not been found to have any biological function at all. In environmental studies, iron has been studied in detail for its limiting role in the bioproductivity of high nutrient, low carbon oceanic zones, while aluminium is routinely used as a reference of crustal contributions to atmospheric deposition archives including peat bogs, lacustrine and marine sediments and ice sheets and glaciers. We report here the development of a flow injection analysis technique, which has been optimised for the simultaneous determination of soluble iron and aluminium in polar ice cores. Iron was determined by its catalytic role in the reduction of N,N-dimethyl-p-phenylenediamene (DPD) to a semiquinonic form (DPDQ) and subsequent absorption spectroscopy at 514 nm. Aluminium was determined by spectroscopic analysis of an aluminium–lumogallion complex that exhibits fluorescence at 560 nm. These techniques have been applied to a section of Greenland ice dated to 1729–1733 ad and indicate that volcanism is a source of highly soluble aluminium and iron.

The micro volume flow cell used in the continuous flow detections of iron illuminated by a 525-nm LED light source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429–436

    Article  CAS  Google Scholar 

  2. Bory AJM, Biscaye PE, Grousset FE (2003) Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys Res Lett 30(4):1167. doi:10.1029/2002gl016446

    Article  Google Scholar 

  3. Delmonte B, Baroni C, Andersson PS, Schoberg H, Hansson M, Aciego S, Petit J-R, Albani S, Mazzola C, Maggi V, Frezzotti M (2010) Aeolian dust in the Talos Dome ice core (East Antarctica, Pacific/Ross Sea sector): Victoria Land versus remote sources over the last two climate cycles. J Quat Sci 25(8):1327–1337

    Article  Google Scholar 

  4. NGRIP (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431(7005):147–151

    Article  Google Scholar 

  5. Wolff E, Barbante C, Becagli S, Bigler M, Boutron C, Castellano E, De Angelis M, Federer U, Fischer H, Fundel F (2010) Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quat Sci Rev 29(1–2):285–295

    Article  Google Scholar 

  6. Kaufmann PR, Federer U, Hutterli MA, Bigler M, Schupbach S, Ruth U, Schmitt J, Stocker TF (2008) An improved continuous flow analysis system for high-resolution field measurements on ice cores. Environ Sci Technol 42(21):8044–8050. doi:10.1021/es8007722

    Article  CAS  Google Scholar 

  7. Candelone J-P, Hong S, Boutron CF (1994) An improved method for decontaminating polar snow or ice cores for heavy metal analysis. Anal Chim Acta 299(1):9–16

    Article  CAS  Google Scholar 

  8. Ruth U, Barbante C, Bigler M, Delmonte B, Fischer H, Gabrielli P, Gaspari V, Kaufmann P, Lambert F, Maggi V (2008) Proxies and measurement techniques for mineral dust in Antarctic ice cores. Environ Sci Technol 42(15):5675–5681

    Article  CAS  Google Scholar 

  9. McConnell JR, Lamorey GW, Lambert SW, Taylor KC (2002) Continuous ice-core chemical analyses using inductively coupled plasma mass spectrometry. Environ Sci Technol 36(1):7–11. doi:10.1021/es011088z

    Article  CAS  Google Scholar 

  10. Bigler M, Svensson A, Kettner E, Vallelonga P, Nielsen ME, Steffensen J (2011) Optimization of high-resolution continuous flow analysis for transient climate signals in ice cores. Environ Sci Technol 45(10):4483–4489. doi:10.1021/es200118j

    Article  CAS  Google Scholar 

  11. Osterberg EC, Handley MJ, Sneed SB, Mayewski PA, Kreutz KJ (2006) Continuous ice core melter system with discrete sampling for major ion, trace element, and stable isotope analyses. Environ Sci Technol 40(10):3355–3361. doi:10.1021/es052536w

    Article  CAS  Google Scholar 

  12. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59(7):1217–1232

    Article  CAS  Google Scholar 

  13. Spolaor A, Vallelonga P, Gabrieli J, Cozzi G, Boutron C, Barbante C (2012) Determination of Fe2+ and Fe3+ species by FIA-CRC-ICP-MS in Antarctic ice samples. J Anal Atom Spectrom 27:310–317

    Article  CAS  Google Scholar 

  14. Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. PalOc 5(1):1–13. doi:10.1029/PA005i001p00001

    Google Scholar 

  15. Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner SJ, Hunter CN, Elrod VA, Nowicki JL, Coley TL, Barber RT, Lindley S, Watson AJ, Van Scoy K, Law CS, Liddicoat MI, Ling R, Stanton T, Stockel J, Collins C, Anderson A, Bidigare R, Ondrusek M, Latasa M, Millero FJ, Lee K, Yao W, Zhang JZ, Friederich G, Sakamoto C, Chavez F, Buck K, Kolber Z, Greene R, Falkowski P, Chisholm SW, Hoge F, Swift R, Yungel J, Turner S, Nightingale P, Hatton A, Liss P, Tindale NW (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371(6493):123–129

    Article  CAS  Google Scholar 

  16. Gaspari V, Barbante C, Cozzi G, Cescon P, Boutron CF, Gabrielli P, Capodaglio G, Ferrari C, Petit JR, Delmonte B (2006) Atmospheric iron fluxes over the last deglaciation: climatic implications. Geophys Res Lett 33(3):L03704. doi:10.1029/2005gl024352

    Article  Google Scholar 

  17. Gabrielli P, Planchon FAM, Hong S, Lee KH, Hur SD, Barbante C, Ferrari CP, Petit JR, Lipenkov VY, Cescon P, Boutron CF (2005) Trace elements in Vostok Antarctic ice during the last four climatic cycles. Earth Planet Sci Lett 234(1–2):249–259

    Article  CAS  Google Scholar 

  18. Iglesias M, Gilon N, Poussel E, Mermet J-M (2002) Evaluation of an ICP-collision/reaction cell-MS system for the sensitive determination of spectrally interfered and non-interfered elements using the same gas conditions. J Anal Atom Spectrom 17(10):1240–1247

    Article  CAS  Google Scholar 

  19. Pullin MJ, Cabaniss SE (2001) Colorimetric flow-injection analysis of dissolved iron in high DOC waters. Water Res 35(2):363–372

    Article  CAS  Google Scholar 

  20. Kozak J, Gutowski J, Kozak M, Wieczorek M, Kościelniak P (2010) New method for simultaneous determination of Fe(II) and Fe(III) in water using flow injection technique. Anal Chim Acta 668(1):8–12

    Article  CAS  Google Scholar 

  21. Lannuzel D, de Jong J, Vr S, Trevena A, Tison J-L, Chou L (2006) Development of a sampling and flow injection analysis technique for iron determination in the sea ice environment. Anal Chim Acta 556(2):476–483

    Article  CAS  Google Scholar 

  22. Hirayama K, Unohara N (1988) Spectrophotometric catalytic determination of an ultratrace amount of iron(III) in water based on the oxidation of N,N-dimethyl-p-phenylenediamine by hydrogen peroxide. Anal Chem 60(23):2573–2577. doi:10.1021/ac00174a009

    Article  CAS  Google Scholar 

  23. Traversi R, Barbante C, Gaspari V, Fattori I, Largiuni O, Magaldi L, Udisti R (2004) Aluminium and iron record for the last 28 kyr derived from the Antarctic EDC96 ice core using new CFA methods. Ann Glaciol 39(1):300–306

    Article  CAS  Google Scholar 

  24. Buck CS, Landing WM, Resing JA, Lebon GT (2006) Aerosol iron and aluminum solubility in the northwest Pacific Ocean: results from the 2002 IOC cruise. Geochem Geophys Geosyst 7(4):Q04M07. doi:10.1029/2005gc000977

    Article  Google Scholar 

  25. Rauch JN, Pacyna JM (2009) Earth’s global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. Global Biogeochem Cycles 23(2):GB2001. doi:10.1029/2008gb003376

    Article  Google Scholar 

  26. Measures CI, Vink S (2000) On the use of dissolved aluminum in surface waters to estimate dust deposition to the ocean. Global Biogeochem Cycles 14(1):317–327. doi:10.1029/1999gb001188

    Article  CAS  Google Scholar 

  27. Van de Velde K, Boutron CF, Ferrari CP, Moreau A, Laure DRJ, Barbante C, Bellomi T, Capodaglio G, Cescon P (2000) A two hundred years record of atmospheric cadmium, copper and zinc concentrations in high altitude snow and ice from the French and Italian Alps. Geophys Res Lett 27(2):249–252. doi:10.1029/1999gl010786

    Article  CAS  Google Scholar 

  28. Benitez-Nelson CR, Vink SM, Carrillo JH, Huebert BJ (2003) Volcanically influenced iron and aluminum cloud water deposition to Hawaii. Atmos Environ 37(4):535–544

    Article  CAS  Google Scholar 

  29. Hong S, Boutron CF, Edwards R, Morgan VI (1998) Heavy metals in Antarctic ice from Law Dome: initial results. Environ Res 78(2):94–103

    Article  CAS  Google Scholar 

  30. Hong S, Boutron CF, Barbante C, Do Hur S, Lee K, Gabrielli P, Capodaglio G, Ferrari CP, Turetta C, Petit JR, Lipenkov VY (2005) Glacial-interglacial changes in the occurrence of Pb, Cd, Cu and Zn in Vostok Antarctic ice from 240 000 to 410 000 years BP. J Environ Monitor 7(12):1326–1331

    Article  CAS  Google Scholar 

  31. Hong S, Candelone J-P, Boutron CF (1996) Deposition of atmospheric heavy metals to the Greenland ice sheet from the 1783-1784 volcanic eruption of Laki, Iceland. Earth Planet Sci Lett 144:605–610

    Article  CAS  Google Scholar 

  32. Hydes DJ, Liss PS (1976) Fluorimetric method for the determination of low concentrations of dissolved aluminium in natural waters. Analyst 101(1209):922–931

    Article  CAS  Google Scholar 

  33. Obata H, Nozaki Y, Okamura K, Maruo M, Nakayama E (2000) Flow-through analysis of Al in seawater by fluorometric detection with the use of lumogallion. Field Anal Chem Tech 4(6):274–282

    Article  CAS  Google Scholar 

  34. Baker AR, Jickells TD (2006) Mineral particle size as a control on aerosol iron solubility. Geophys Res Lett 33(17):L17608. doi:10.1029/2006gl026557

    Article  Google Scholar 

  35. Measures CI, Yuan J, Resing JA (1995) Determination of iron in seawater by flow injection analysis using in-line preconcentration and spectrophotometric detection. Mar Chem 50(1–4):3–12

    Article  CAS  Google Scholar 

  36. Resing JA, Measures CI (1994) Fluorometric determination of Al in seawater by flow injection analysis with in-line preconcentration. Anal Chem 66(22):4105–4111. doi:10.1021/ac00094a039

    Article  CAS  Google Scholar 

  37. Andersen KK, Ditlevsen PD, Rasmussen SO, Clausen HB, Vinther BM, Johnsen SJ, Steffensen JP (2006) Retrieving a common accumulation record from Greenland ice cores for the past 1800 years. J Geophys Res 111(D15):D15106. doi:10.1029/2005jd006765

    Article  Google Scholar 

  38. Millero FJ, Yao WS, Aicher J (1995) The speciation of Fe(II) and Fe(III) in natural-waters. Mar Chem 50(1–4):21–39

    Article  CAS  Google Scholar 

  39. Bigler M, Svensson A, Steffensen J, Rgen P, Kaufmann P (2007) A new continuous high-resolution detection system for sulphate in ice cores. Ann Glaciol 45(1):178–182

    Article  CAS  Google Scholar 

  40. Maring HB, Duce RA (1987) The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater, 1. Aluminum. Earth Planet Sci Lett 84(4):381–392

    Article  CAS  Google Scholar 

  41. Duggen S, Olgun N, Croot P, Hoffmann L, Dietze H, Teschner C (2009) The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review. Biogeosci Discuss 6(4):6441–6489. doi:10.5194/bgd-6-6441-2009

    Article  Google Scholar 

  42. Gabrielli P, Barbante C, Plane JMC, Boutron CF, Jaffrezo JL, Mather TA, Stenni B, Gaspari V, Cozzi G, Ferrari C, Cescon P (2008) Siderophile metal fallout to Greenland from the 1991 winter eruption of Hekla (Iceland) and during the global atmospheric perturbation of Pinatubo. Chem Geol 255:78–86

    Article  CAS  Google Scholar 

  43. Zhuang G, Yi Z, Duce RA, Brown PR (1992) Link between iron and sulphur cycles suggested by detection of Fe(n) in remote marine aerosols. Nature 355(6360):537–539

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anders Svensson, Henrik Clausen and Bo Vinther for helpful discussion and assistance with NorthGRIP SO 2−4 data and the sample chronology. This work is a contribution to the NGRIP ice core project, which is directed and organised by the Ice and Climate Research Group at the Niels Bohr Institute, University of Copenhagen. It is being supported by funding agencies in Denmark (SNF), Belgium (FNRS-CFB), France (IFRTP and INSU/CNRS), Germany (AWI), Iceland (RannIs), Japan (MEXT), Sweden (SPRS), Switzerland (SNF) and the USA (NSF). The research leading to these results has received funding from the European Union's Seventh Framework programme (FP7/2007–2013) under grant agreement no. 243908, ‘Past4Future: Climate change—Learning from the past climate’. This is Past4Future contribution no. XX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Barbante.

Additional information

Published in the special issue Analytical Science in Italy with guest editor Aldo Roda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spolaor, A., Vallelonga, P., Gabrieli, J. et al. Continuous flow analysis method for determination of soluble iron and aluminium in ice cores. Anal Bioanal Chem 405, 767–774 (2013). https://doi.org/10.1007/s00216-012-6166-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6166-5

Keywords

Navigation