Skip to main content
Log in

Ensembles of nanoelectrodes modified with gold nanoparticles: characterization and application to DNA-hybridization detection

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new method to increase the active area (A act) of nanoelectrode ensembles (NEEs) is described. To this aim, gold nanoparticles (AuNPs) are immobilized onto the surface of NEEs using cysteamine as a cross-linker able to bind the AuNPs to the heads of the nanoelectrodes to obtain the so-called AuNPs-NEEs. The analysis of the cyclic voltammograms recorded in pure supporting electrolyte showed that the presence of the nanoparticles reflects in an, approximately, ten-times increase in the electrochemically active area of the ensemble. The measurement of the amount of electroactive polyoxometalates, which can be adsorbed on the gold surface of NEEs vs. AuNPs-NEEs, confirmed a significant increase of active area for the latter. These evidences indicate that there is a good electronic connection between the AuNPs and the underlying nanoelectrodes. The possibility to exploit AuNPs-NEEs for biosensing application was tested for the case of DNA-hybridization detection. After immobilization on the gold surface of AuNPs-NEEs of a thiolated single-stranded DNA, the hybridization with complementary sequences labeled with glucose oxidase (GOx) was performed. The detection of the hybridization was achieved by adding to the electrolyte solution the GOx substrate (i.e., glucose) and a suitable redox mediator, namely the (ferrocenylmethyl) trimethylammonium (FA+) cation; when the hybridization occurs, an electrocatalytic increase of the oxidation current of FA+ is recorded. Comparison of electrocatalytic current recorded at DNA modified NEEs and AuNPs-NEEs indicate, for the latter, a significant increase in sensitivity in the detection of the DNA-hybridization event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Menon VP, Martin CR (1995) Anal Chem 67:1920–1928

    Article  CAS  Google Scholar 

  2. Moretto LM, Panero S, Scrosati B, Ugo P (2009) In: Lin Y, Nalwa HS (eds) Handbook of electrochemical nanotechnology, vol 1. ASP, Stevenson Ranch

    Google Scholar 

  3. Ugo P, Moretto LM, Vezzà F (2002) ChemPhysChem 3:917–925

    Article  CAS  Google Scholar 

  4. Yu S, Li N, Wharton J, Martin CR (2003) Nano Lett 3:815–818

    Article  CAS  Google Scholar 

  5. Krishnamoorthy K, Zoski CG (2005) Anal Chem 77:5068–5071

    Article  CAS  Google Scholar 

  6. Gasparac R, Taft BJ, Lapierre-Devlin MA, Lazareck AD, Xu JM, Kelley SO (2004) J Am Chem Soc 126:12270–12271

    Article  CAS  Google Scholar 

  7. De Leo M, Kuhn A, Ugo P (2007) Electroanalysis 19:227–236

    Article  Google Scholar 

  8. Dyne J, Lin Y-S, Lai LMH, Ginges JZ, Luais E, Peterson JR, Goon IY, Amal R, Gooding JJ (2010) ChemPhysChem 11:2807–2813

    Article  CAS  Google Scholar 

  9. Wang J (2002) Anal Chim Acta 469:63–71

    Article  CAS  Google Scholar 

  10. Silvestrini M, Fruk Lj, Ugo P (2012) Biosens Bioelectron.doi:10.1016/j.bios.2012.07.041

  11. Abys JA, Maisano JJ (2000) US Patent N° 6,126,807

  12. Fruk LJ, Müller J, Weber G, Narvaez A, Dominguez E, Niemeyer CM (2007) Chem Eur J 13(18):5223–5231

    Article  CAS  Google Scholar 

  13. Shein JB, Lai LMH, Eggers PK, Paddon-Row MN, Gooding JJ (2009) Langmuir 25:11121–11128

    Article  CAS  Google Scholar 

  14. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Anal Chem 79:4215–4221

    Article  CAS  Google Scholar 

  15. Silvestrini M, Schiavuta P, Scopece P, Pecchielan G, Moretto LM, Ugo P (2011) Electrochim Acta 56:7718–7724

    Article  CAS  Google Scholar 

  16. Ugo P, Moretto LM (2007) In: Zoski CG (ed) Handbook of electrochemistry, chapter 16.2. Elsevier, Amsterdam

    Google Scholar 

  17. Yang W, Wang J, Zhao S, Sun Y, Sun C (2006) Electrochem Commun 8:665–672

    Article  CAS  Google Scholar 

  18. Cai H, Xu C, He P, Fang Y (2001) J Electroanal Chem 510:78–85

    Article  CAS  Google Scholar 

  19. Leff DV, Brandt L, Heath JR (1996) Langmuir 12:4723–4730

    Article  CAS  Google Scholar 

  20. Hoft RC, Ford MJ, McDonagh AM, Cortie MB (2007) J Phys Chem C 111:13886–13891

    Article  CAS  Google Scholar 

  21. Peterson AW, Heaton RJ, Georgiadis RM (2001) Nucleic Acids Res 29(24):5163–5168

    Article  CAS  Google Scholar 

  22. Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  23. Wang Y, Weinstock IA (2010) Dalton Trans 39:6143–6152

    Article  CAS  Google Scholar 

  24. Kaba MS, Song IK, Barteau MA (1996) J Phys Chem 100:19577–19581

    Article  CAS  Google Scholar 

  25. Zhang G, He T, Ma Y, Chen Z, Yang W, Yao J (2003) Phys Chem Chem Phys 5:2751–2753

    Article  CAS  Google Scholar 

  26. Martel D, Sojic N, Kuhn A (2002) J Chem Ed 79:349–352

    Article  CAS  Google Scholar 

  27. Ugo P, Pepe N, Moretto LM, Battagliarin M (2003) J Electroanal Chem 560:51–58

    Article  CAS  Google Scholar 

  28. Herne TM, Tarlov MJ (1997) J Am Chem Soc 119:8916–8920

    Article  CAS  Google Scholar 

  29. Park S, Brown KA, Hamad-Schifferli K (2004) Nano Lett 4(10):1925–1929

    Article  CAS  Google Scholar 

  30. Bin X, Sargent EH, Kelley SO (2010) Anal Chem 82:5928–5921

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MIUR (Rome), project: PRIN 2008MWHCP2 and by the Cross-Border Cooperation Italy–Slovenia Programme 2007–2013—Strategic Project TRANS2CARE. We thank Dr. Loredana Casalis (ELETTRA, Sincrotrone Trieste, Scuola Internazionale Superiore di Studi Avanzati) for helpful discussion and suggestions, Dr. Davide Cristofori (University Ca’ Foscari) for TEM measurements and Dr. Ljiljana Fruk (KIT—Karlsruhe Institute of Technology) for oligonucleotide stock solutions, and Dania Kendziora (KIT—Karlsruhe Institute of Technology) for D2-GOx conjugation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ugo.

Additional information

Published in the special issue Analytical Science in Italy with guest editor Aldo Roda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvestrini, M., Ugo, P. Ensembles of nanoelectrodes modified with gold nanoparticles: characterization and application to DNA-hybridization detection. Anal Bioanal Chem 405, 995–1005 (2013). https://doi.org/10.1007/s00216-012-6354-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6354-3

Keywords

Navigation