Skip to main content
Log in

Graphene-modified electrode. Determination of hydrogen peroxide at high concentrations

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A gold electrode partially coated by graphene multilayer is developed and tested with respect to high concentrations of hydrogen peroxide. The effective use of conventional electrode materials for the determination of such an analyte by anodic oxidation or cathodic reduction is prevented by the occurrence of adsorptions fouling the electrode surface. This prevents reliable and repeatable voltammetric curves for being recorded and serious problems arise in quantitative analysis via amperometry. The gold–graphene electrode is shown to be effective in quantitative evaluation, by cathodic reduction, of hydrogen peroxide at concentration levels that are of interest in an industrial. Acid, neutral, and basic pH values have been tested through correct adjustment of a Britton Robinson buffer. The experiments have been performed both by cyclic voltammetry and with amperometry at constant potential in unstirred solution. The latter technique has been employed in drawing a calibration linear plot. In particular, the performances of the developed electrode system have been compared with those of both pure gold and pure graphene electrode materials. The bi-component electrode was more sensitive; co-catalytic action by the combination of the two components is hypothesised. The system is stable over many potential cycles, as checked by surface-enhanced Raman spectra recorded over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jones CW (1999) Applications of hydrogen peroxide and derivatives. RSC Publishing, London

    Google Scholar 

  2. Callis JB, Illman DL, Kowalski BR (1987) Anal Chem 59:624A–637A

    CAS  Google Scholar 

  3. Chen W, Cai S, Ren Q-Q, Wen W, Zhao TD (2012) Analyst 137:49–58

    Article  CAS  Google Scholar 

  4. Zanardi C, Terzi F, Zanfrognini B, Pigani L, Seeber R, Lukkari J, Ääritalo T (2010) Sens Act B 144:92–98

    Article  Google Scholar 

  5. JUMO http://www.jumo.de Accessed 9 October 2012

  6. Pumera M, Ambrosi A, Bonanni A, Lay Khim Chng E, Ling Poh H (2010) Trend Anal Chem 29:954–965

    Article  CAS  Google Scholar 

  7. Chen X-M, Wu G-H, Wang Y-Q, Chen X (2011) Analyst 136:4631–4640

    Article  CAS  Google Scholar 

  8. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Electroanal 22:1027–1036

    Article  CAS  Google Scholar 

  9. Liu S, Tian J, Wang L, Sun X (2011) Carbon 49:3158–3164

    Article  CAS  Google Scholar 

  10. Hu J, Li F, Wang K, Han D, Zhanga Q, Yuan J, Niu L (2012) Talanta 93:345–349

    Article  CAS  Google Scholar 

  11. Xu F, Sun Y, Zhang Y, Shi Y, Wen Z, Li Z (2011) Electrochem Commun 13:1131–1134

    Article  CAS  Google Scholar 

  12. Liu X, Zhu H, Yang X (2011) Talanta 87:243–248

    Article  CAS  Google Scholar 

  13. Liu Y, Chu Z, Jin W (2009) Electrochem Commun 11:484–487

    Article  CAS  Google Scholar 

  14. Ting SW, Prakash Periasamy A, Chen S-M, Saraswathi R (2011) Int J Electrochem Sci 6:4438–4453

    CAS  Google Scholar 

  15. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Carbon 42:2929–2937

    CAS  Google Scholar 

  16. Pesonen M, Majumdar HS, Kauppila J, Lukkari J, Österbacka R (2012) MRS Online Proceedings Library 1407:mrsf11-1407-aa20-25

  17. Fernández CM, Martin VC (1977) Talanta 24:747–748

    Article  Google Scholar 

  18. Davies CW (1962) Ion association. Butterworths, Washington D.C.

  19. Wkabayashi N, Takeichi M, Itagaki M, Uchida H, Watanabe M (2005) J Electroanal Chem 574:339–346

    Article  Google Scholar 

  20. Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR (1992) J Electrochem Soc 139:2530–2537

    Article  CAS  Google Scholar 

  21. Paliteiro C, Hamnett A, Goodenough JB (1987) J Electroanal Chem 233:147–159

    Article  CAS  Google Scholar 

  22. Gochi-Ponce Y, Alonso-Nunez G, Alonso-Vante N (2006) Electrochem Commun 8:1487–1491

    Article  CAS  Google Scholar 

  23. Gao P, Gosztola D, Leung L-WH, Weaver MJ (1987) J Electroanal Chem 233:211–222

    Article  CAS  Google Scholar 

  24. Pumera M (2010) Chem Soc Rev 39:4146–4157

    Article  CAS  Google Scholar 

  25. Chechik V, Crooks RM, Stirling CJM (2000) Adv Mater 12:1161–1171

    Article  CAS  Google Scholar 

  26. Viinikanoja A, Wang Z, Kauppila J, Kvarnström C (2012) PCCP 14:14003–14009

    Article  CAS  Google Scholar 

  27. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  28. McCreery RL (2008) Chem Rev 108:2646–2687

    Article  CAS  Google Scholar 

  29. Gerlache M, Senturk Z, Quarin G, Kauffmann JM (1997) Electroanal 9:1088–1092

    Article  CAS  Google Scholar 

  30. Miah MR, Ohsaka T (2006) Anal Chem 78:1200–1205

    Article  CAS  Google Scholar 

  31. Kondratiev VV, Pogulaichenko NA, Tolstopjatova EG, Malev VV (2011) J Solid State Electroche 15:2383–2393

    Article  CAS  Google Scholar 

  32. Zeis R, Lei T, Sieradzki K, Snyder J, Erlebacher J (2008) J Catal 253:132–138

    Article  CAS  Google Scholar 

  33. Shin C, Shin W, Hong HG (2007) Electrochim Acta 53:720–728

    Article  CAS  Google Scholar 

  34. McKee DW (1969) J Catal 14:355–364

    Article  CAS  Google Scholar 

  35. Goszner K, Bischof F (1974) J Catal 32:175–182

    Article  CAS  Google Scholar 

  36. Kishimoto S, Nishioka M (1977) J Phys Chem 81:1307–1311

    Article  Google Scholar 

  37. Burke LD, Nugent PF (1997) Gold Bull 30:43–53

    Article  CAS  Google Scholar 

  38. Burke LD, Nugent PF (1997) Gold Bull 31:39–50

    Article  Google Scholar 

  39. Burke LD (2004) Gold Bull 37:125–135

    Article  CAS  Google Scholar 

  40. Medeiros PVC, Gueorguiev GK, Stafstrom S (2012) Phys Rev B 85:205423

    Article  Google Scholar 

  41. Sławinska J, Dabrowski P, Zasada I (2011) Phys Rev B 85:245429

    Article  Google Scholar 

  42. Giovannetti G, Khomyakov PA, Brocks G, Karpan VM, van den Brink J, Kelly PL (2008) Phys Rev Lett 101:026803

    Article  CAS  Google Scholar 

  43. Malola S, Häkkinen H, Koskinen P (2009) Appl Phys Lett 94:043106

    Article  Google Scholar 

  44. Zan R, Bangert U, Ramasse Q, Novoselov KS (2011) Nano Lett 11:1087–1092

    Article  CAS  Google Scholar 

  45. Ortiz MC, Sanchez MS, Sarabia LA, Elsevier (2009) In: Brown SD, Tauler R, Walczak B (eds) Comprehensive chemometrics—chemical and biochemical data analysis. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Seeber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terzi, F., Pelliciari, J., Zanardi, C. et al. Graphene-modified electrode. Determination of hydrogen peroxide at high concentrations. Anal Bioanal Chem 405, 3579–3586 (2013). https://doi.org/10.1007/s00216-012-6648-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6648-5

Keywords

Navigation