Skip to main content
Log in

Nafion® as advanced immobilisation substrate for the voltammetric analysis of electroactive microparticles: the case of some artistic colouring agents

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Voltammetry of microparticles is applied to characterise and to identify solid analytes of interest in the field of cultural heritage. Nafion® is used for the immobilisation of solid microparticles onto the surface of a glassy carbon electrode by exploiting the deposition onto the electrode surface of a micro-volume of a suspension of the microsample in polymeric solution. Cyclic voltammetry and square wave voltammetry are applied to characterise and to identify the microparticles immobilised in the Nafion® coating. The analyte studied in this work is Prussian Blue as a typical inorganic pigment, with a relatively simple electrochemical behaviour. The proposed method is applied to a sample of Venetian marmorino plaster. The performance of Nafion® for this analysis is compared with that of the polymer Paraloid B72.

From sampling the pigment in the work of art to recording the voltammetric signal with Nafion coated electrodes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pinna D, Galeotti M, Mazzeo R (2009) Scientific examination for the investigation of paintings. A Handbook for Conservator-Restorers, Centro Di Firenze

    Google Scholar 

  2. Milazzo M (2004) Nucl Instrum Meth B 213:683–692

    Article  CAS  Google Scholar 

  3. Ferretti M (2000) In: Creagh DC, Bradley DA (eds) Radiation in art and archaeometry. Elsevier, Amsterdam

    Google Scholar 

  4. Janssens K (2004) In: Janssens K, VanGrieken R (eds) Non-destructive microanalysis of cultural heritage materials. Amsterdam, Elsevier

    Google Scholar 

  5. Mazzocchin GA, Agnoli F, Mazzocchin S, Colpo I (2003) Talanta 61:565–572

    Article  CAS  Google Scholar 

  6. Calligaro T, Dran JC, Saloman J (2004) In: Jannsens K, Van Grieken R (eds) Non-destructive micro analysis of cultural heritage materials. Amsterdam, Elsevier

    Google Scholar 

  7. Denker A, Opitz-Coutureau J (2004) Nucl Instr Meth Phys Res B 213:677–682

    Article  CAS  Google Scholar 

  8. Piccolo M, Porcinai S (1999) Recent Res Devel Appl Spectr 2:125–135

    Google Scholar 

  9. Scholz et al (2005) Electrochemistry of immobilized particles and droplets. Springer, Berlin-Heidelberg

    Google Scholar 

  10. Scholz F, Meyer (1998) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, a series of advances, vol 20. Marcel Dekker, New York, pp 1–86

    Google Scholar 

  11. Adams RN (1958) Anal Chem 30:1576

    Article  CAS  Google Scholar 

  12. Kuwana T, French WG (1964) Anal Chem 36:241–242

    Article  CAS  Google Scholar 

  13. Svancara I, Kalcher K, Walcarius A, Vytras K (2012) Electroanalysis with carbon paste electrodes. CRC Press, USA

    Google Scholar 

  14. Scholz F, Nitschke L, Henrion G (1989) Frezenius Z Anal Chem 334:56–58

    Article  CAS  Google Scholar 

  15. Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) In: Scholz F (ed) Monographs in electrochemistry series, electrochemical methods in archaeometry, conservation and restoration. Berlin-Heidelberg, Springer

    Chapter  Google Scholar 

  16. Doménech-Carbò A (2010) J Solid State Electrochem 14:363–37915

    Article  Google Scholar 

  17. Doménech-Carbó A, Doménech-Carbó MT, Moya-Moreno M, Gimeno-Adelantado JV, Bosch-Reig F (2000) Anal Chim Acta 407:275–289

    Article  Google Scholar 

  18. Doménech-Carbó A, Doménech-Carbó MT, Gimeno-Adelantado JV, Moya-Moreno M, Bosch-Reig F (2000) Electroanalysis 12:120–127

    Article  Google Scholar 

  19. Ugo P, Moretto LM (2012) In: Inamuddin LM (ed) Ion-exchange technology: theory, materials and applications, chapter 7 ion-exchange voltammetry (IEV). Springer, Berlin

    Google Scholar 

  20. Ugo P, Moretto LM (1995) Electroanalysis 12:1105–1113

    Article  Google Scholar 

  21. Ghica ME, Brett CMA (2005) Anal Lett 38:907–920

    Article  CAS  Google Scholar 

  22. Kotzian P, Brazdilova P, Kalcher K, Vytras K (2005) Anal Lett 38:1099–1113

    Article  CAS  Google Scholar 

  23. Oliveira Matos I, Andrade Alves W (2011) Appl Mater Interfaces 3:4437–4443

    Article  Google Scholar 

  24. Li J, Zhang J, Wie H, Wang E (2009) Analyst 134:273–277

    Article  CAS  Google Scholar 

  25. Ugo P, Moretto LM, De Boni A, Scopece P, Mazzocchin GA (2002) Anal Chim Acta 474:147–160

    Article  CAS  Google Scholar 

  26. Moretto LM, Bertoncello P, Vezzà F, Ugo P (2005) Bioelectrochem 66:29–34

    Article  CAS  Google Scholar 

  27. Moretto LM, Kohls T, Badocco D, Pastore P, Sojic N, Ugo P (2010) J Electroanal Chem 640:35–41

    Article  CAS  Google Scholar 

  28. Kraft A (2008) Bull Hist Chem 33:61–67

    CAS  Google Scholar 

  29. Mortimer RJ, Reynolds JR (2005) J Mater Chem 15:2226–2233

    Article  CAS  Google Scholar 

  30. Neff VD (1978) J Electrochem Soc 125:886–887

    Article  CAS  Google Scholar 

  31. Itaya K, Ataka A, Toshima S (1982) J Am Chem Soc 104:4767–4772

    Article  CAS  Google Scholar 

  32. Mortimer RJ, Rosseinsky DR (1983) J Electroanal Chem 151:133–147

    Article  CAS  Google Scholar 

  33. Mortimer RJ (1997) Chem Soc Rev 26:147–156

    Article  CAS  Google Scholar 

  34. De Benedetto GE, Guascito MR, Ciriello R, Cataldi TI (2000) Anal Chim Acta 410:143–152

    Article  Google Scholar 

  35. Pajerowski DM, Watanabe T, Yamamoto T, Einaga Y (2011) Phys Rev B 83:153202–153204

    Article  Google Scholar 

  36. Scharf U, Grabner EW (1996) Electrochim Acta 41:233–239

    Article  CAS  Google Scholar 

  37. Karyakin AA (2001) Electroanalysis 13:813–819

    Article  CAS  Google Scholar 

  38. Dostal A, Meyer B, Scholz F, Schroder U, Bond AM, Maken F, Shaw SG (1995) J Phys Chem 99:2096–2103

    Article  CAS  Google Scholar 

  39. Scholz F, Dostal A (1995) Angew Chem Int Ed 34:2685–2687

    CAS  Google Scholar 

  40. Kahlert H, Retter U, Lohse H, Siegler K, Scholz F (1998) J Phys Chem B 102:8757–8765

    Article  CAS  Google Scholar 

  41. Kulesza PJ, Zamponi S, Malik MA, Miecznikowski K, Berrettoni M, Marassi R (1997) J Sol State Electrochem 1:88–93

    Article  CAS  Google Scholar 

  42. Feldman BJ, Murray RW (1987) Inorg Chem 26:1702–1708

    Article  CAS  Google Scholar 

  43. Naegeli R, Redepenning J, Anson FC (1986) J Phys Chem 90:6227–6232

    Article  CAS  Google Scholar 

  44. Redepenning J, Anson FC (1987) J Phys Chem 91:4549–4553

    Article  CAS  Google Scholar 

  45. Ugo P, Anson FC (1989) Anal Chem 61:1799–1805

    Article  CAS  Google Scholar 

  46. Toniolo R, Comisso N, Bontempelli G, Schiavon G (1994) Talanta 41:473–478

    Article  CAS  Google Scholar 

  47. Gonçalves RMC, Kellawi H, Rosseinsky DR (1983) J Chem Soc Dalton Trans 991–994

  48. Mortimer RJ, Rosseinsky DR (1984) J Chem Soc Dalton Trans 2059–2061

  49. Lufrano F, Staiti P (2004) Electrochem Solid-State Lett 7:A447–A450

    Article  CAS  Google Scholar 

  50. Garcia-Jareno JJ, Sanmatias A, Navarro-Laboulais J, Vicente F (1998) Electrochim Acta 44:395–405

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by PRIN-MIUR (Rome). We thank D. Rudello for EDS analyses and Dr. Caterina Pozzobon for performing some preliminary experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligia Maria Moretto.

Additional information

Published in the topical collection Amperometric Sensing with guest editors Renato Seeber, Fabio Terzi, and Chiara Zanardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moretto, L.M., Montagner, F., Ganzerla, R. et al. Nafion® as advanced immobilisation substrate for the voltammetric analysis of electroactive microparticles: the case of some artistic colouring agents. Anal Bioanal Chem 405, 3603–3610 (2013). https://doi.org/10.1007/s00216-013-6796-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6796-2

Keywords

Navigation