Skip to main content
Log in

Domoic acid at trace levels in lagoon waters: assessment of a method using internal standard quantification

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Domoic acid (DA) is a neurotoxin produced by different algae, including pennate diatoms, principally from the genus Pseudo-nitzschia, and it is the main cause of amnesic shellfish poisoning. Determination of this toxin in seawater samples is fundamental to define the real contamination risks for aquatic species. We have developed two very sensitive instrumental methods using hydrophilic interaction liquid chromatography coupled using tandem mass spectrometry in positive and negative polarity modes. Instrumental detection limits were 9 pg mL−1 for positive and 19 pg mL−1 for negative ionisation. A procedural method based on solid-phase extraction for the determination of dissolved DA present in seawater has been developed, and an extraction procedure was employed for the determination of the toxin in the particulate fraction. DA quantification was performed using the internal standard method to account for signals fluctuations and random errors during sample treatment. To our knowledge, this is the first study to use this quantification method for DA determination. Trueness, extraction yield, matrix effects, repeatability and procedural detection limits were evaluated during method validation. Procedural detection limits of 0.3 pg mL−1 (positive mode) and 0.6 pg mL−1 (negative mode) were found for the dissolved fraction, and absolute limits of 0.4 pg (positive mode) and 6.0 pg (negative mode) for particulate samples were obtained. The most sensitive method in positive mode was applied to define DA occurrence in the Venice Lagoon. Trace concentrations of domoic acid ranging from 1.5 to 16.2 pg mL−1 were found for the first time in the Venetian environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Villac MC, Roelke DL, Villareal TA, Fryxell GA (1993) Comparison of 2 domoic acid-producing diatoms—a review. Hydrobiologia 269:213–224

    Article  Google Scholar 

  2. Lelong A, Hegaret H, Soudant P, Bates SS (2012) Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. Phycologia 51:168–216

    Article  CAS  Google Scholar 

  3. Mos L (2001) Domoic acid: a fascinating marine toxin. Environ Toxicol Pharmacol 9:79–85

    Article  CAS  Google Scholar 

  4. Todd ECD (1993) Domoic acid and amnesic shellfish poisoning—a review. J Food Prot 56:69–83

    CAS  Google Scholar 

  5. Ravn H (1995) Amnesic shellfish poisoning (ASP), UNESCO

  6. Busse LB, Venrick EL, Antrobus R, Miller PE, Vigilant V, Silver MW, Mengelt C, Mydlarz L, Prezelin BB (2006) Domoic acid in phytoplankton and fish in San Diego, CA, USA. Harmful Algae 5:91–101

    Article  CAS  Google Scholar 

  7. Trainer VL, Adams NG, Bill BD, Stehr CM, Wekell JC, Moeller P, Busman M, Woodruff D (2000) Domoic acid production near California coastal upwelling zones, June 1998. Limnol Oceanogr 45:1818–1833

    Article  CAS  Google Scholar 

  8. Mafra LL Jr, Leger C, Bates SS, Quilliam MA (2009) Analysis of trace levels of domoic acid in seawater and plankton by liquid chromatography without derivatization, using UV or mass spectrometry detection. J Chromatogr A 1216:6003–6011

    Article  CAS  Google Scholar 

  9. Wang Z, Maucher-Fuquay J, Fire SE, Mikulski CM, Haynes B, Doucette GJ, Ramsdell JS (2012) Optimization of solid-phase extraction and liquid chromatography-tandem mass spectrometry for the determination of domoic acid in seawater, phytoplankton, and mammalian fluids and tissues. Anal Chim Acta 715:71–79

    Article  CAS  Google Scholar 

  10. Wang ZH, King KL, Ramsdell JS, Doucette GJ (2007) Determination of domoic acid in seawater and phytoplankton by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1163:169–176

    Article  CAS  Google Scholar 

  11. de la Iglesia P, Gimenez G, Diogene J (2008) Determination of dissolved domoic acid in seawater with reversed-phase extraction disks and rapid resolution liquid chromatography tandem mass spectrometry with head-column trapping. J Chromatogr A 1215:116–124

    Article  Google Scholar 

  12. Chan IOM, Tsang VWH, Chu KK, Leung SK, Lam MHW, Lau TC, Lam PKS, Wu RSS (2007) Solid-phase extraction-fluorimetric high performance liquid chromatographic determination of domoic acid in natural seawater mediated by an amorphous titania sorbent. Anal Chim Acta 583:111–117

    Article  CAS  Google Scholar 

  13. Elena Vera-Avila L, Marin-Perez DY, Covarrubias-Herrera R (2011) Trace level determination of domoic acid in seawater by off-line/on-line solid-phase extraction coupled to HPLC-UV. J Mex Chem Soc 55:65–71

    Google Scholar 

  14. Gustavsson SA, Samskog J, Markides KE, Langstrom B (2001) Studies of signal suppression in liquid chromatography-electrospray ionization mass spectrometry using volatile ion-pairing reagents. J Chromatogr A 937:41–47

    Article  CAS  Google Scholar 

  15. Kebarle P, Tang L (1993) From ions in solution to ions in the gas-phase—the mechanism of electrospray mass spectrometry. Anal Chem 65:972A–986A

    CAS  Google Scholar 

  16. Walter JA, Leek DM, Falk M (1992) NMR study of the pronoation of domoic acid. Can J Chem-Revue Canadienne De Chimie 70:1156–1161

    Article  CAS  Google Scholar 

  17. Bates SS, Garrison DL, Horner RA (1998) Bloom dynamics and physiology of domoic acid producing Pseudo-Nitzschia species, Springer Verlag, Heidelberg, pp 267–292

  18. Totti C, Cangini M, Ferrari C, Kraus R, Pompei M, Pugnetti A, Romagnoli T, Vanucci S, Socal G (2005) Phytoplankton size-distribution and community structure in relation to mucilage occurrence in the northern Adriatic Sea. Sci Total Environ 353:204–217

    Article  CAS  Google Scholar 

  19. A. APHA, WEP (1998) Standard methods for the examination of water and wastewater, Washington

  20. Furey A, Lehane M, Gillman M, Fernandez-Puente P, James KJ (2001) Determination of domoic acid in shellfish by liquid chromatography with electrospray ionization and multiple tandem mass spectrometry. J Chromatogr A 938:167–174

    Article  CAS  Google Scholar 

  21. Lawrence JF, Cleroux C, Truelove JF (1994) Comparison of high performance liquid chromatography with radioimmunoassay for the determination of domoic acid in biological samples. J Chromatogr A 662:173–177

    Article  CAS  Google Scholar 

  22. Hess P, Gallacher S, Bates LA, Brown N, Quilliam MA (2001) Determination and confirmation of the amnesic shellfish poisoning toxin, domoic acid, in shellfish from Scotland by liquid chromatography and mass spectrometry. J Aoac Int 84:1657–1667

    CAS  Google Scholar 

  23. Hummert C, Ruhl A, Reinhardt K, Gerdts G, Luckas B (2002) Simultaneous analysis of different algal toxins by LC-MS. Chromatographia 55:673–680

    Article  CAS  Google Scholar 

  24. Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Magno GS, Tartaglione L, Quilliam MA, Tubaro A, Poletti R (2005) Hydrophilic interaction liquid chromatography/mass spectrometry for determination of domoic acid in Adriatic shellfish. Rapid Commun Mass Spectrom 19:2030–2038

    Article  CAS  Google Scholar 

  25. Dell’Aversano C, Eaglesham GK, Quilliam MA (2004) Analysis of cyanobacterial toxins by hydrophilic interaction liquid chromatography-mass spectrometry. J Chromatogr A 1028:155–164

    Article  Google Scholar 

  26. Barbaro E, Zangrando R, Moret I, Barbante C, Cescon P, Gambaro A (2011) Free amino acids in atmospheric particulate matter of Venice, Italy. Atmos Environ 45:5050–5057

    Article  CAS  Google Scholar 

  27. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499:177–196

    Article  CAS  Google Scholar 

  28. Zhu BY, Mant CT, Hodges (1991) Hydrophilic-interaction chromatography of peptides on hydrophilic and strong cation-exchange colums. J Chromatogr 548:13–24

    Article  CAS  Google Scholar 

  29. Zhu BY, Mant CT, Hodges (1992) Mixed-mode hydrophilic and ionic interaction chromatography rivals reversed-phase liquid chromatography for the separation of peptides. J Chromatogr 594:75–86

    Article  CAS  Google Scholar 

  30. Nguyen HP, Schug KA (2008) The advantage of ESI-MS detection in conjunction with HILIC mode separations: fundamentals and applications. J Sep Sci 31:1465–1480

    Article  CAS  Google Scholar 

  31. Gambaro A, Barbaro E, Zangrando R, Barbante C (2012) Simultaneous quantification of microcystins and nodularin in aerosol samples using high-performance liquid chromatography/negative electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 26:1497–1506

    Article  CAS  Google Scholar 

  32. Bliesner DM (2006) Validating chromatographic methods a practical guide. John Wiley & Sons, Inc, Hoboken

    Book  Google Scholar 

  33. Pocklington R, Milley JE, Bates SS, Bird CJ, Defreitas ASW, Quilliam MA (1990) Trace determination of domoic acid in seawater and phytoplankton by high perfomance liquid chromatography of the fluorenylmethoxycarbonyl (FMOC) derivate. Int J Environ Anal Chem 38:351–368

    Article  CAS  Google Scholar 

  34. Sun T, Wong WH (1999) Determination of domoic acid in phytoplankton by high-performance liquid chromatography of the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivative. J Agric Food Chem 47:4678–4681

    Article  CAS  Google Scholar 

  35. James KJ, Gillman M, Lehane M, Gago-Martinez A (2000) New fluorimetric method of liquid chromatography for the determination of the neurotoxin domoic acid in seafood and marine phytoplankton. J Chromatogr A 871:1–6

    Article  CAS  Google Scholar 

  36. King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T (2000) Mechanistic investigation of ionization suppression in electrospray ionization. J Am Soc Mass Spectrom 11:942–950

    Article  CAS  Google Scholar 

  37. Guidance for Industry on Bioanalytical Method Validation (2001) In: F.a.D.A. Department of Health and Human Services, pp 28526

  38. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  39. Tor ER, Puschner B, Whitehead WE (2003) Rapid determination of domoic acid in serum and urine by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem 51:1791–1796

    Article  CAS  Google Scholar 

  40. Cong LM, Huang BF, Chen Q, Lu BY, Zhang J, Ren YP (2006) Determination of trace amount of microcystins in water samples using liquid chromatography coupled with triple quadrupole mass spectrometry. Anal Chim Acta 569:157–168

    Article  CAS  Google Scholar 

  41. Pan YL, Parsons ML, Busman M, Moeller PDR, Dortch Q, Powell CL, Doucette GJ (2001) Pseudo-nitzschia sp cf. pseudodelicatissima—a confirmed producer of domoic acid from the northern Gulf of Mexico. Marine Ecology-Progress Series 220:83–92

    Article  CAS  Google Scholar 

  42. Schnetzer A, Miller PE, Schaffner RA, Stauffer BA, Jones BH, Weisberg SB, DiGiacomo PM, Berelson WM, Caron DA (2007) Blooms of Pseudo-nitzschia and domoic acid in the San Pedro Channel and Los Angeles harbor areas of the Southern California Bight, 2003–2004. Harmful Algae 6:372–387

    Article  CAS  Google Scholar 

  43. Schlitzer R (2011) Ocean data view

  44. Bernardi Aubry F, Acri F (2004) Phytoplankton seasonality and exchange at the inlets of the Lagoon of Venice (July 2001–June 2002). J Mar Syst 51:65–76

    Article  Google Scholar 

  45. Bernardi Aubry F, Berton A, Bastianini M, Socal G, Acri F (2004) Phytoplankton succession in a coastal area of the NW Adriatic, over a 10-year sampling period (1990–1999). Cont Shelf Res 24:97–115

    Article  Google Scholar 

  46. Acri F, Bernardi Aubry F, Berton A, Bianchi F, Boldrin A, Camatti E, Comaschi A, Rabitti S, Socal G (2004) Plankton communities and nutrients in the Venice Lagoon. Comparison between current and old data. J Mar Syst 51:321–329

    Article  Google Scholar 

  47. Penna A, Ingarao C, Ercolessi M, Rocchi M, Penna N (2006) Potentially harmful microalgal distribution in an area of the NW Adriatic coastline: sampling procedure and correlations with environmental factors. Estuar Coast Shelf Sci 70:307–316

    Article  Google Scholar 

  48. Maric D, Ljubesic Z, Godrijan J, Vilicic D, Ujevic I, Precali R (2011) Blooms of the potentially toxic diatom Pseudo-nitzschia calliantha Lundholm, Moestrup & Hasle in coastal waters of the northern Adriatic Sea (Croatia). Estuarine Coastal Shelf Sci 92:323–331

    Article  CAS  Google Scholar 

  49. Takahashi E, Yu Q, Eaglesham G, Connell DW, McBroom J, Costanzo S, Shaw GR (2007) Occurrence and seasonal variations of algal toxins in water, phytoplankton and shellfish from North Stradbroke Island, Queensland, Australia. Mar Environ Res 64:429–442

    Article  CAS  Google Scholar 

  50. Marchetti A, Trainer VL, Harrison PJ (2004) Environmental conditions and phytoplankton dynamics associated with Pseudo-nitzschia abundance and domoic acid in the Juan de Fuca eddy. Marine Ecology-Progress Series 281:1–12

    Article  CAS  Google Scholar 

  51. Bates SS, Worms J, Smith JC (1993) Effects of ammonium and nitrate on growth and domoic acid production by nitzschia pungens in batch culture. Can J Fish Aquat Sci 50:1248–1254

    Article  CAS  Google Scholar 

  52. Pan YL, Rao DVS, Mann KH, Brown RG, Pocklington R (1996) Effects of silicate limitation on production of domoic acid, a neurotoxin, by the diatom Pseudo-nitzschia multiseries.1. Batch culture studies. Marine Ecology-Progress Series 131:225–233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Council of Italy (CNR). The authors gratefully acknowledge the help of ELGA LabWater in providing the PURELAB Option-R and Ultra Analytic systems, which produced the ultra-pure water used in these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Barbaro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Sampling details and description of the environmental parameters during analysis are provided. Figures include the sampling stations and the spatial distribution of DA (picograms per milliliter), P-PO4 3− (micromolars), Si-Si(OH)4 (micromolars), total inorganic nitrogen (TIN = N-NO3 - + N-NO2 - + N-NH4 +) (micromolars), chlorophyll a (micrograms per milliliter) and the ratio between chlorophyll a and pheophytin a (PDF 1682 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbaro, E., Zangrando, R., Rossi, S. et al. Domoic acid at trace levels in lagoon waters: assessment of a method using internal standard quantification. Anal Bioanal Chem 405, 9113–9123 (2013). https://doi.org/10.1007/s00216-013-7348-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7348-5

Keywords

Navigation