Skip to main content
Log in

d- and l-amino acids in Antarctic lakes: assessment of a very sensitive HPLC-MS method

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Amino acids represent a fraction of organic matter in marine and freshwater ecosystems, and a source of carbon, nitrogen and energy. l-Amino acids are the most common enantiomers in nature because these chiral forms are used during the biosynthesis of proteins and peptide. To the contrary, the occurrence of d-amino acids is usually linked to the presence of bacteria. We investigated the distribution of l- and d-amino acids in the lacustrine environment of Terra Nova Bay, Antarctica, in order to define their natural composition in this area and to individuate a possible relationship with primary production. A simultaneous chromatographic separation of 40 l- and d-amino acids was performed using a chiral stationary phase based on teicoplainin aglycone (chirobiotic tag). The chromatographic separation was coupled to two different mass spectrometers—an LTQ-Orbitrap XL (Thermo Fisher Scientific) and an API 4000 (ABSciex)—in order to investigate their quantitative performance. High-performance liquid chromatography coupled with mass spectrometry methods were evaluated through the estimation of their linear ranges, repeatability, accuracy and detection and quantification limits. The high-resolution mass spectrometer LTQ-Orbitrap XL presented detection limits between 0.4 and 7 μg l −1, while the triple quadrupole mass spectrometer API 4000 achieved the best detection limits reported in the literature for the quantification of amino acids (between 4 and 200 ng l −1). The most sensitive method, HPLC-API 4000, was applied to lake water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hegeman WJM, Laane RWPM (2002) Enantiomeric enrichment of chiral pesticides in the environment. In: Ware GW, Nigg H, Doerge DR (eds) Reviews of environmental contamination and toxicology. Springer, New York

    Google Scholar 

  2. Friedman M (1991) Formation, nutritional value, and safety of D-amino acids. Nutr Toxicol Consequences Food Process 289:447–481

    Article  CAS  Google Scholar 

  3. Fitznar HP, Lobbes JM, Kattner G (1999) Determination of enantiomeric amino acids with high-performance liquid chromatography and pre-column derivatisation with o-phthaldialdehyde and N-isobutyrylcysteine in seawater and fossil samples (mollusks). J Chromatogr A832:123–132

    Article  Google Scholar 

  4. Cronin JR, Pizzarello S (1999) Amino acid enantiomer excesses in meteorites: origin and significance. Life Sci Exobiol 23:293–299

    CAS  Google Scholar 

  5. Cronin JR, Pizzarello S (1997) Enantiomeric excesses in meteoritic amino acids. Science 275:951–955

    Article  CAS  Google Scholar 

  6. Voet D, Voet JG (199) Biochemistry. John Wiley and Sons, New York

  7. Bada JL (1984) In vivo racemization in mammalian proteins. Methods Enzymol 106:98–115

    Article  CAS  Google Scholar 

  8. Mahaney WC, Rutter NW (1989) Amino acid D-L ratio distributions in 2 late quaternary soils in the afroalpine zone of Mount - Kenya, East-Africa. Catena 16:205–214

    Article  CAS  Google Scholar 

  9. Ingrosso D, Perna AF (1998) D-amino acids in aging erythrocytes. EXS 85:119–141

    CAS  Google Scholar 

  10. Amelung W (2003) Nitrogen biomarkers and their fate in soil. J Plant Nutr Soil 166:677–686

    CAS  Google Scholar 

  11. Berman T, Bronk DA (2003) Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquat Microb Ecol 31:279–305

    Article  Google Scholar 

  12. Bronk DA, Glibert PM, Ward BB (1994) Nitrogen uptake, dissolved organic nitrogen release, and new production. Science 265:1843–1846

    Article  CAS  Google Scholar 

  13. Berman T, Viner-Mozzini Y (2001) Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret. Aquat Microb Ecol 24:255–264

    Article  Google Scholar 

  14. Jonsson A, Strom L, Aberg J (2007) Composition and variations in the occurrence of dissolved free simple organic compounds of an unproductive lake ecosystem in northern Sweden. Biogeochemistry 82:153–163

    Article  CAS  Google Scholar 

  15. Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400(2008):212–226

    Article  CAS  Google Scholar 

  16. Bargagli R (2005) Antarctic ecosystems. Environmental contamination, climate change and human impact. Springer, Berlin

  17. Green WJ, Ferdelman TG, Gardner TJ, Varner LC, Angle MP (1986) The residence times of 8 trace metals in a closed basin Antarctic lake. Lake Hoare. Hydrobiologia 134:249–255

    Article  CAS  Google Scholar 

  18. Green WJ, Angle MP, Chave KE (1988) The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo Dry Valleys. Geochim Cosmochim Acta 52:1265–1274

    Article  CAS  Google Scholar 

  19. Abollino O, Aceto M, Buoso S, Gasparon M, Green WJ, Malandrino M, Mentasti E (2003) Distribution of major, minor and trace elements in lake environments of Antarctica. AntarctSci 16:277–291

    Article  Google Scholar 

  20. Abollino O, Malandrino M, Zelano I, Giacomino A, Buoso S, Mentasti E (2012) Characterization of the element content in lacustrine ecosystems in Terra Nova Bay, Antarctica. Microchem J105:142–151

    Article  Google Scholar 

  21. Borghini F, Bargagli R (2004) Changes of major ion concentrations in melting snow and terrestrial waters from northern Victoria Land, Antarctica. Antarct Sci 16:107–115

    Article  Google Scholar 

  22. Borghini F, Colacevich A, Caruso T, Bargagli R (2008) Temporal variation in the water chemistry of northern Victoria Land lakes (Antarctica). Aquat Sci 70:134–141

    Article  CAS  Google Scholar 

  23. Gragnani R, Torcini S (1992) Major, minor and trace element distributions in surface water in Terra Nova Bay, Antarctica. Sci Total Environ 125:289–303

    Article  CAS  Google Scholar 

  24. Wharton RA, Lyons WB, Marais DJD (1993) Stable isotopic biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake. Chem Geol 107:159–172

    Article  CAS  Google Scholar 

  25. Gibson JAE, Qiang XL, Franzmann PD, Garrick RC, Burton HR (1994) Volatile fatty and dissolved free amino acids in Organic Lake, Vestfold Hills, East Antarctica. Pol Biol 14:545–550

    Article  Google Scholar 

  26. Borghini F, Colacevich A, Bargagli R (2007) Water geochemistry and sedimentary pigments in northern Victoria Land lakes, Antarctica. Pol Biol 30:1173–1182

    Article  Google Scholar 

  27. Borghini F, Colacevich A, Bargagli R (2010) A study of autotrophic communities in two Victoria Land lakes (Continental Antarctica) using photosynthetic pigments. J Limnol 69:333–340

    Article  Google Scholar 

  28. Doran PT, Wharton RA, Lyons WB (1994) Paleolimnology of the McMurdo Dry Valleys, Antarctica. J Paleolimnol 10:85–114

    Article  CAS  Google Scholar 

  29. Nedell SS, Andersen DW, Squyres SW, Love FG (1987) Sedimentation in ice-covered Lake Hoare, Antarctica. Sedimentology 34:1093–1106

    Article  Google Scholar 

  30. De Carlo EH, Green WJ (2002) Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica. Geochim Cosmochim Acta 66:1323–1333

    Article  Google Scholar 

  31. Marfey P (1984) Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsb Res Commun 49:591–596

    Article  CAS  Google Scholar 

  32. Buck RH, Krummen K (1987) High-performance liquid chromatographic determination of enantiomeric amino acids and amino alcohols after derivatization with o-phthaldialdehyde and various chiral mercaptans: Application to peptide hydrolysates. J Chromatogr 387:255–265

    Article  CAS  Google Scholar 

  33. Dolowy M, Pyka A (2014) Application of TLC, HPLC and GC methods to the study of amino acid and peptide enantiomers: a review. Biomed Chromatogr 28:84–101

    Article  CAS  Google Scholar 

  34. Remelli M, Fornasari P, Pulidori F (1997) Study of retention, efficiency and selectivity in chiral ligand-exchange chromatography with a dynamically coated stationary phase. J Chromatogr A 761:79–89

    Article  CAS  Google Scholar 

  35. Armstrong DW, Yang X, Han SM, Menges RA (1987) Direct liquid chromatographic separation of racemates with an alpha-cyclodextrin bonded phase. Anal Chem 59:2594–2596

  36. Gimenez F, Soursac M, Farinotti R (1997) Enantiomeric separation of five amino acids by high-performance liquid chromatography on a chiral crown ether column. Chirality 9:150–152

    Article  CAS  Google Scholar 

  37. Petritis K, Valleix A, Elfakir C, Dreux M (2001) Simultaneous analysis of underivatized chiral amino acids by liquid chromatography-ionspray tandem mass spectrometry using a teicoplanin chiral stationary phase. J Chromatogr A 913:331–340

    Article  CAS  Google Scholar 

  38. Schlauch M, Frahm AW (2000) Enantiomeric and diastereomeric high-performance liquid chromatographic separation of cyclic beta-substituted alpha-amino acids on a teicoplanin chiral stationary phase. J Chromatogr A 868:197–207

    Article  CAS  Google Scholar 

  39. Petritis K, Elfakir C, Dreux M (2002) A comparative study of commercial liquid chromatographic detectors for the analysis of underivatized amino acids. J Chromatogr A 961:9–21

    Article  CAS  Google Scholar 

  40. ASTEC, Advantaged Separations Technology Inc. (2004) Chirobiotic handbook, a guide to using macrocyclic glycopeptide bonded phases for chiral LC separations

  41. Bargagli R, Smith RIL, Martella L, Monaci F, Sanchez-Hernandez JC, Ugolini FC (1999) Solution geochemistry and behaviour of major and trace elements during summer in a moss community at Edmonson Point, Victoria Land, Antarctica. Antarct Sci 11:3–12

    Article  Google Scholar 

  42. Andreoli C, Scarabel L, Spini S, Grassi C (1992) The picoplankton in Antarctic lakes of Northern Victoria Land during summer 1989-1990. Pol Biol 11:575–582

    Article  Google Scholar 

  43. Fumanti B, Cavacini P, Alfinito S (1997) Benthic algal mats of some lakes of Inexpressible Island (northern Victoria Land, Antarctica). Pol Biol 17:25–30

    Article  Google Scholar 

  44. Bargagli R, Monaci F, Bucci C (2007) Environmental biogeochemistry of mercury in Antarctic ecosystems. Soil Biol Biochem 39:352–360

    Article  CAS  Google Scholar 

  45. American Public Health Association (1998) Standard method for the examination of water and wastewater, American Public Health Association, Washington, DC.

  46. Berthod A, Chen XH, Kullman JP, Armstrong DW, Gasparrini F, D’Acquarica I, Villani C, Carotti A (2000) Role of the carbohydrate moieties in chiral recognition on teicoplanin-based LC stationary phases. Anal Chem 72:1767–1780

    Article  CAS  Google Scholar 

  47. Peter A, Torok G, Armstrong DW, Toth G, Tourwe D (1998) Effect of temperature on retention of enantiomers of beta-methyl amino acids on a teicoplanin chiral stationary phase. J Chromatogr A 828:177–190

    Article  CAS  Google Scholar 

  48. Tesarova E, Bosakova Z, Pecakova V (1999) Comparison of enantioselective separation of N-tert.-butyloxycarbonyl amino acids and their non-blocked analogues on teicoplanin-based chiral stationary phase. J Chromatogr A 838:121–129

    Article  CAS  Google Scholar 

  49. Kebarle P, Tang L (1993) From ions in solution to ions in the gas phase—the mechanism of electrospray mass spectrometry. Anal Chem 65:972A–986A

  50. King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T (2000) Mechanistic investigation of ionization suppression in electrospray ionization. J Am Soc Mass Spectrom 11:942–950

  51. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75:3019–3030

  52. Boyd RK, Basic C, Bethem RA (2008) Front matter, in trace quantitative analysis by mass spectrometry. John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9780470727140.fmatter

  53. Bliesner DM (2006) Validating chromatographic methods a practicalguide. John Wiley & Sons, Inc, Hoboken

    Book  Google Scholar 

  54. Petritis K, Brussaux S, Guenu S, Elfakir C, Dreux M (2002) Ion-pair reversed-phase liquid chromatography-electrospray mass spectrometry for the analysis of underivatized small peptides. J ChromatogrA 957:173–185

    Article  CAS  Google Scholar 

  55. Barbaro E, Zangrando R, Moret I, Barbante C, Cescon P, Gambaro A (2011) Free amino acids in atmospheric particulate matter of Venice, Italy. Atmos Environ 45:5050–5057

    Article  CAS  Google Scholar 

  56. Zangrando R, Piazza R, Cairns WRL, Izzo FC, Vianello A, Zendri E, Gambaro A (2010) Quantitative determination of un-derivatised amino acids in artistic mural paintings using high-performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry. Anal Chim Acta 675:1–7

    Article  CAS  Google Scholar 

  57. Jorgensen NOG, Sondergaard M (1984) Are dissolved free amino acids free? MicrobEcol 10:301–316

    CAS  Google Scholar 

  58. Jorgensen NOG (1986) Fluxes of free amino acids in three Danish lakes. Freshw Biol 16:255–268

    Article  Google Scholar 

  59. Jorgensen NOG (1987) Free amino acids in lakes: concentrations and assimilation rates in relation to phytoplankton and bacterial production. Limnol Oceanogr 32:97–111

    Article  Google Scholar 

  60. Riemann B, Jorgensen NOG, Lampert W, Fuhrman JA (1986) Zooplankton induced changes in dissolved free amino acids and in production rates of freshwater bacteria. MicrobEcol 12:247–258

    CAS  Google Scholar 

  61. Simon M (1985) Specific uptake rates of amino acids by attached and free living bacteria in a mesotrophic lake. Appl Environ Microbiol 49:1254–1259

    CAS  Google Scholar 

  62. Munster U (1991) Extracellular enzyme activity in eutrophic and poly-humic lakes. In: Microbial enzymes in aquatic environments. Spinger Verlag, New York, pp 96–122

  63. Munster U (1992) Microbial extracellular enzyme activities in HUMEX lake Skjervatjern. Environ Internatl 18:637–647

    Article  Google Scholar 

  64. Munster U (1992) Microbial extracellular enzyme activities and biopolymer processing in two polyhumic lakes. Arch Hydrobiol Ergebn Limnol 37:21–32

  65. Wedyan MA, Preston MR (2008) The coupling of surface seawater organic nitrogen and the marine aerosol as inferred from enantiomer-specific amino acid analysis. Atmos Environ 42:8698–8705

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Italian Programma Nazionale di Ricerche in Antartide (PNRA) through the project “Caratterizzazione Biogeochimica dei laghi sub-glaciali antartici (CaBiLA)” (2009/A2.02). The research was also funded by the National Research Council of Italy (CNR) and by the Early Human Impact ERC Advance Grant of the European Commission’s VII Framework Programme, grant number 267696, contribution no. 13. The authors thank ELGA LabWater for providing the PURE-LAB Option-R and Ultra Analytic, which produced the ultrapure water used in these experiments. We would also like to thank Dr. Daniela Almansi for the revision of our manuscript. In conclusion, we wish to thank Dr. S. Illuminati (Polytechnic University of Marche – Ancona, Italy) for her help and cooperation during the sampling activities in Antarctica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Barbaro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbaro, E., Zangrando, R., Vecchiato, M. et al. d- and l-amino acids in Antarctic lakes: assessment of a very sensitive HPLC-MS method. Anal Bioanal Chem 406, 5259–5270 (2014). https://doi.org/10.1007/s00216-014-7961-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7961-y

Keywords

Navigation