Skip to main content
Log in

GC-MS method for determining faecal sterols as biomarkers of human and pastoral animal presence in freshwater sediments

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In order to determine sterols and stanols in freshwater sediments to reconstruct the past presence of humans and pastoral animals, we developed an analytical method based on pressurised liquid extraction (PLE), clean-up performed using solid phase extraction (SPE) and sterol determination using gas chromatography–mass spectrometry (GC-MS) analysis. PLE extraction conditions were optimised using dichloromethane (DCM) and DCM/methanol mixtures. Clean-up was performed with 2 g silica SPE cartridges, and the concentrated extracts were eluted with 70 mL DCM. Extraction yield was evaluated using an in-house reference material spiked with 13C-labelled cholesterol and aged for 10 days. In comparison with pre-extraction, where the sediment is extracted and then spiked with a known analyte concentration, this approach preserves the original composition of the sediment. DCM and DCM/methanol mixtures resulted in high extraction yields ranging from 86 to 92 % with good reproducibility (relative standard deviation (RSD) 5–8 %). PLE extraction yields obtained with DCM as the extracting solvent were about 1.5 times higher than extractions using an ultrasonic bath. The solvent extraction mixture and matrix composition strongly affected the solvent extraction composition where higher overall recoveries (70–80 %) for each compound were obtained with DCM. The extraction mixture and matrix composition also affected the analyte concentrations, resulting in a method precision ranging from 1 to 18 %. Diatomaceous earth spiked with 10 to 100 ng of sterols, and environmental samples fortified with suitable amounts of sterols provided apparent recovery values ranging from 90 to 110 %. We applied the method to environmental samples both close to and upstream from sewage discharge zones, resulting in substantially higher faecal sterol (FeSt) concentrations near the sewage. In addition, we also applied the method to a 37-cm freshwater sediment core in order to evaluate its applicability for obtaining vertical sterol profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bull ID, Lockheart MJ, Elhmmali MM, Roberts DJ, Evershed RP (2002) Environ Int 27:647–654

    Article  CAS  Google Scholar 

  2. Murtaugh JJ, Bunch RL (1967) J Water Pollut Control 39:404–409

    CAS  Google Scholar 

  3. Hatcher PG, McGillivary PA (1979) Environ Sci Technol 13:1225–1229

    Article  CAS  Google Scholar 

  4. Leeming P, Ball R, Ashbolt A, Jones N, Nichols G (1984) Aust J Chem 61:434–435

    Google Scholar 

  5. Daughton CG (2012) Sci Total Environ 414:6–21

    Article  CAS  Google Scholar 

  6. Vane CH, Kim W, McGowan S, Leng MJ, Heaton THE, Kendrick CP, Coombs P, Yang H, Swann GE (2010) Sci Total Environ 409:345–356

    Article  CAS  Google Scholar 

  7. Tse TJ, Codling G, Jones PD, Thoms K, Liber K, Giesy JP, Wheater H, Doig LE (2014) Chemosphere 103:299–305

    Article  CAS  Google Scholar 

  8. Wen-Yen H, Meinschein W (1976) Geochim Cosmochim Acta 40:323–330

    Article  Google Scholar 

  9. Dureth S, Herrmann R, Pecher K (1986) Water Air Soil Pollut 28:131–149

    Google Scholar 

  10. Chapman PM, Wang F, Janssen C, Persoone G, Allen HE (1998) Can J Fish Aquat Sci 55:2221–2243

    Article  CAS  Google Scholar 

  11. Wardroper AMK, Maxwell JR, Morris RJ (1978) Steroids 32:203–221

    Article  CAS  Google Scholar 

  12. Canuel EA, Martens CS (1996) Geochim Cosmochim Acta 60:1793–1806

    Article  CAS  Google Scholar 

  13. Bachtiar T, Radjasa OK, Sabdono A (2004) J Coastal Environ 8:17–25

    Google Scholar 

  14. Froehner S, Maceno M, Martins RF (2010) Environ Monit Assess 170:261–72

    Article  CAS  Google Scholar 

  15. Sojinu SO, Sonibare OO, Ekundayo O, Zeng EY (2012) Sci Total Environ 441:89–96

    Article  CAS  Google Scholar 

  16. Cordeiro LGSM, Carreira SM, Wagener ALR (2008) Org Geochem 39:1097–1103

    Article  CAS  Google Scholar 

  17. Birk JJ, Dippold M, Wiesenberg GLB, Glaser B (2012) J Chromatogr A 1242:1–10

    Article  CAS  Google Scholar 

  18. D’Anjou RM, Bradley RS, Balascio NL, Finkelstein DB (2012) Proc Natl Acad Sci U S A 109:20332–7

    Article  Google Scholar 

  19. Tyagi P, Edwards DR, Coyne MS (2007) Water Air Soil Pollut 187:263–274

    Article  Google Scholar 

  20. Takada H, Farrington JW, Bothner MH, Johnson CG, Tripp BW (1994) Environ Sci Technol 28:1062–1072

    Article  CAS  Google Scholar 

  21. Grimalt JO, Fernandez P, Bayona JM, Albaiges J (1990) Environ Sci Technol 24:357–363

    Article  CAS  Google Scholar 

  22. Venkatesan MI, Santiago CA (1989) Mar Biol 102:431–437

    Article  CAS  Google Scholar 

  23. Hughes K (2004) Environ Pollut 127:315–321

    Article  CAS  Google Scholar 

  24. Bethell PH, Goad LJ, Evershed RP, Ottaway J (1994) J Archaeol Sci 21:619–632

    Article  Google Scholar 

  25. Evershed RP, Bethell PH (1996) ACS Symp Ser 625:157–172

    Article  CAS  Google Scholar 

  26. Kawakami SK, Montone RC (2002) J Brazil Chem Soc 13:226–232

    Article  CAS  Google Scholar 

  27. Ogura K, Machihara T, Takada H (1990) Org Geochem 16:805–813

    Article  CAS  Google Scholar 

  28. Szucs S, Sárváry A, Cain T, Adány R (2006) J Chromatogr Sci 44:70–76

    Article  CAS  Google Scholar 

  29. Noblet JA, Young DL, Zeng EY, Ensari S (2004) Environ Sci Technol 38:6002–6008

    Article  CAS  Google Scholar 

  30. Li D, Dong M, Shim WJ, Kannan N (2007) J Chromatogr A 1160:64–70

    Article  CAS  Google Scholar 

  31. Writer JH, Leenheer JA, Barber LB, Amy GL, Chapra SC (1995) Wat Res 29:1427–1436

    Article  CAS  Google Scholar 

  32. Nichols PD, Leeming R, Rayner MS, Latham V (1996) J Chromatogr A 733:497–509

    Article  CAS  Google Scholar 

  33. Benfenati E, Cools E, Fattore E, Fanelli R (1994) Chemosphere 29:1393–1405

    Article  CAS  Google Scholar 

  34. Jayasinghe LY, Marriott PJ, Carpenter PD, Nichols PD (1998) J Chromatogr A 809:109–120

    Article  CAS  Google Scholar 

  35. Nichols PD, Leeming R, Rayner MS, Latham V (1993) J Chromatogr A 643:189–195

    Article  CAS  Google Scholar 

  36. Isobe KO, Tarao M, Zakaria MP, Chiem NH, Minh LY, Takada H (2002) Environ Sci Technol 36:4497–4507

    Article  CAS  Google Scholar 

  37. Readman JW, Preston MR, Mantoura RFC (1986) Mar Pollut Bull 17:298–308

    Article  CAS  Google Scholar 

  38. Saeed T, Al-Shimmari F, Al-Mutairi A, Abdullah H (2015) Mar Pollut Bull 307–317

  39. Derrien M, Arcega Cabrera F, Velasquez Tavera NL, Kantun Manzano CA, Capella Vizcaino S (2015) Sci Tot Environ 511:223–229

    Article  CAS  Google Scholar 

  40. Peng X, Zhang G, Mai B, Min Y, Wang Z (2002) Mar Pollut Bull 45:295–299

    Article  CAS  Google Scholar 

  41. Green G, Skerratt JH, Leeming R, Nichols PD (1992) Mar Pollut Bull 25:293–302

    Article  CAS  Google Scholar 

  42. Venkatesan MI, Mirsadeghi FH (1992) Mar Pollut Bull 25:328–333

    Article  CAS  Google Scholar 

  43. Venkatesan MI, Kaplan IR (1990) Environ Sci Technol 24:208–214

    Article  CAS  Google Scholar 

  44. Laureillard J, Saliot A (1993) Mar Chem 43:247–261

    Article  CAS  Google Scholar 

  45. Martins CC, Aguiar SN, Wisnieski E, Ceschim LMM, Figueira RCL, Montone RC (2014) Mar Pollut Bull 78:218–223

    Article  CAS  Google Scholar 

  46. Wisnieski E, Bicego MC, Montone RC, Figueira RCL, Ceschim LMM, Mahiques MM, Martins CC (2014) Polar Biol 37:483–496

    Article  Google Scholar 

  47. Osman R, Saim N (2013) J Chem 2013, ID 357252

    Article  Google Scholar 

  48. Baultz H, Polzer J, Stieglitz L (1998) J Chromatogr A 215:231–241

    Article  Google Scholar 

  49. Boselli E, Velazco V, Caboni MF, Lercker G (2001) J Chromatogr A 917:239–244

    Article  CAS  Google Scholar 

  50. Burkhardt MR, ReVello RC, Smith SG, Zaugg SD (2005) Anal Chim Acta 534:89–100

    Article  CAS  Google Scholar 

  51. Grilo CF, Neto RR, Vicente M, de Castro EVR, Figueira RCL, Carreira RS (2013) Appl Geochemistry 38:82–91

    Article  CAS  Google Scholar 

  52. Rychlik M (2011) Fortification of foods with vitamins. Wiley-VCH Verlag GmbH & Co. KGaA

  53. Kwok WH, Leung DKK, Leung GNW, Tang FPW, Wan TSM, Wong CHF, Wong JKY (2008) Rapid Commun Mass Spectrom 22:682–686

    Article  CAS  Google Scholar 

  54. Zhou JL, Liu YP (2000) Mar Chem 71:165–176

    Article  CAS  Google Scholar 

  55. UNI - EN 13137 (2001) Characterization of waste—determination of total organic carbon (TOC) in waste, sludges and sediments

  56. Sanagi MM, Ling SL, Nasir Z, Hermawan D, Ibrahim WA, Abu NA (2009) J AOAC Int 92:1833–1838

    CAS  Google Scholar 

  57. Wu J, Hu R, Yue J, Yang Z, Zhang L (2009) J Chromatogr A 1216:1053–1058

    Article  CAS  Google Scholar 

  58. McCalley DV, Cooke M, Nickless G (1981) Water Res 15:1019–1025

    Article  CAS  Google Scholar 

  59. Radzi bin Abas M, Oros DR, Simoneit BRT (2004) Chemosphere 55:1089–1095

    Article  CAS  Google Scholar 

  60. Burns DT, Danzer K, Townshend A (2002) Use of the terms ‘recovery’ and ‘apparent recovery’ in analytical procedures IUPAC, 74:2201–2205

  61. Leeming R, Ball A, Ashbolt N, Nichols P (1996) Water Res 30:2893–2900

    Article  CAS  Google Scholar 

  62. Patton D, Reeves AD (1999) Mar Pollut Bull 38:613–618

    Article  CAS  Google Scholar 

  63. Vecchiato M, Zambon S, Argiriadis E, Barbante C, Gambaro A, Piazza R (2014) Microchem J 120:26–33

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Early Human Impact ERC Advance Grant of the European Commission’s VII Framework Programme, grant number 267696, contribution no. 14. We would also like to thank Dr. Daniela Almansi and Dr. Natalie M. Kehrwald for the revision of our manuscript.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Battistel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battistel, D., Piazza, R., Argiriadis, E. et al. GC-MS method for determining faecal sterols as biomarkers of human and pastoral animal presence in freshwater sediments. Anal Bioanal Chem 407, 8505–8514 (2015). https://doi.org/10.1007/s00216-015-8998-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8998-2

Keywords

Navigation