Skip to main content
Log in

Determination of polyphenol content and colour index in wines through PEDOT-modified electrodes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Poly(3,4-ethylenedioxythiophene)-modified electrodes have been used for the estimation of the polyphenolic content and of the colour index of different samples of wines. Synthetic wine solutions, prepared with different amount of oenocyanins, have been analysed spectrophotometrically and electrochemically in order to find a correlation between the total polyphenolic content or colour index and the current peak. The regression curves obtained have been used as external calibration lines for the analysis of several commercial wines, ranging from white to dark red wines. In this way, a rapid estimation of the total polyphenolic content and of the colour index may be accomplished from a single voltammetric measurement. Furthermore, principal component analysis has also been used to evaluate the effect of total polyphenolic content and colour index on the whole voltammetric signals within a selected potential range, both for the synthetic solutions and for the commercial products.

Electrochemical sensors for the rapid determination of colour index and polyphenol content in wines

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998;56:317–33.

    Article  CAS  Google Scholar 

  2. Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002;22:19–34.

    Article  CAS  Google Scholar 

  3. Oliveira CM, Ferreira ACS, De Freitas V, Silva AMS. Oxidation mechanisms occurring in wines. Food Res Int. 2011;44:1115–26.

    Article  CAS  Google Scholar 

  4. Gamella M, Campunzano S, Reviejo AJ, Pingarron JM. Electrochemical estimation of the polyphenol index in wines using a laccase biosensor. J Agric Food Chem. 2006;54:7960–7.

    Article  CAS  Google Scholar 

  5. Garcia-Falcon MS, Perez-Lamela C, Martinez-Carballo E, Simal-Gandara J. Determination pf phenolic compounds in wines: influence of bottle storage of young red wines on their evolution. Food Chem. 2007;105:248–59.

    Article  CAS  Google Scholar 

  6. Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc. 2007;2:875–7.

    Article  CAS  Google Scholar 

  7. Jensen JS, Demiray S, Egebo M, Meyer AS. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera). J Agric Food Chem. 2008;56:1105–15.

    Article  CAS  Google Scholar 

  8. Sudraud P. Interpretation des courbes de’absorption des vin rouges. Ann Technol Agric. 1958;7:203–8.

    Google Scholar 

  9. Cimino F, Sulfaro V, Trombetta D, Saija A, Tomaino A. Radical-scavenging capacity of several Italian red wines. Food Chem. 2007;103:75–81.

    Article  CAS  Google Scholar 

  10. Dell’Agli M, Buscialà A, Bosisio E. Vascular effects of wine polyphenols. Cardiovasc Res. 2004;63:593–602.

    Article  Google Scholar 

  11. Merken HM, Beecher GR. Measurement of food flavonoids by high-performance liquid chromatography: a review. J Agric Food Chem. 2000;48:577–99.

    Article  CAS  Google Scholar 

  12. Alonso ÁM, Guillén DA, Barroso CG, Puertas B, García A. Determination of antioxidant activity of wine byproducts and its correlation with polyphenolic content. J Agric Food Chem. 2002;50:5832–6.

    Article  CAS  Google Scholar 

  13. Blasco AJ, Gonzalez Crevillen A, Gonzalez MC, Escarpa A. Direct electrochemical sensing and detection of natural antioxidants and antioxidant capacity in vitro systems. Electroanalysis. 2007;19:2275–86.

    Article  CAS  Google Scholar 

  14. Turke A, Fischer W-J, Beaumont N, Kilmartin PA. Electrochemistry of sulfur dioxide, polyphenols and ascorbic acid at poly(3,4-ethylenedioxythiophene) modified electrodes. Electrochim Acta. 2012;60:184–92.

    Article  Google Scholar 

  15. Makhotikina O, Kilmartin PA. The use of cyclic voltammetry for wine analysis: determination of polyphenols and free sulfur dioxide. Anal Chim Acta. 2010;668:155–65.

    Article  Google Scholar 

  16. Kilmartin PA, Zou H, Waterhouse AL. Correlation of wine phenolic composition versus cyclic voltammetry response. Am J Enol Vitic. 2002;53:294–302.

    CAS  Google Scholar 

  17. da Silva LF, Stradiotto NR, Oliveira HP. Determination of caffeic acid in red wine by voltammetric method. Electroanalysis. 2008;20:1252–8.

    Article  Google Scholar 

  18. Jakubec P, Bancirova M, Halouzka V, Lojek A, Ciz M, Denev P, et al. Electrochemical sensing of total antioxidant capacity and polyphenol content in wine samples using amperometry online-coupled with microdialysis. J Agric Food Chem. 2012;60:7836–43.

    Article  CAS  Google Scholar 

  19. Šeruga M, Novak I, Jakobek L. Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods. Food Chem. 2011;124(3):1208–16.

    Article  Google Scholar 

  20. Ziyatdinova G, Kozlova E, Budnikov H. Electropolymerized eugenol-MWNT-based electrode for voltammetric evaluation of wine antioxidant capacity. Electroanalysis. 2015;27:1660–8.

    Article  CAS  Google Scholar 

  21. Curulli A, Di Carlo G, Ingo GM, Ricucci C, Zane D, Bianchini C. Chitosan stabilized gold nanoparticle-modified Au electrodes for the determination of polyphenol index in wines: a preliminary study. Electroanalysis. 2012;24:897–904.

    Article  CAS  Google Scholar 

  22. Di Carlo G, Curulli A, Toro RG, Bianchini C, De Caro T, Padeletti G, et al. Green synthesis of gold-chitosan nanocomposites for caffeic acid sensing. Langmuir. 2012;28:5471–9.

    Article  Google Scholar 

  23. Zikos N, Karaliota A, Liouni M. Chronoamperometry as a tool for the evaluation of antioxidant properties of red wines. J Anal Chem. 2011;66:859–64.

    Article  CAS  Google Scholar 

  24. Ziyatdinova G, Kozlova E, Budnikov H. Chronocoulometry of wine on multi-walled carbon nanotube modified electrode: antioxidant capacity assay. Food Chem. 2016;196:405–10.

    Article  CAS  Google Scholar 

  25. Legin A, Rudnitskaya A, Lvova L, Vlasov Y, Di Natale C, D’Amico A. Evaluation of Italian wine by the electronic tongue: recognition, quantitative analysis and correlation with human sensory perception. Anal Chim Acta. 2003;484:33–44.

    Article  CAS  Google Scholar 

  26. Apetrei C, Apetrei IM, Villanueva S, de Saja JA, Gutierrez-Rosales F, Rodriguez-Mendez ML. Combination of an e-nose, an e-tongue and an e-eye for the characterisation of olive oils with different degree of bitterness. Anal Chim Acta. 2010;663:91–7.

    Article  CAS  Google Scholar 

  27. Pigani L, Culetu A, Ulrici A, Foca G, Vignali M, Seeber R. Pedot modified electrodes in amperometric sensing for analysis of red wine samples. Food Chem. 2011;129:226–33.

    Article  CAS  Google Scholar 

  28. Pigani L, Zanfrognini B, Seeber R. PEDOT-modified microelectrodes. Preparation, characterisation and analytical performances. Electroanalysis. 2012;24:1340–7.

    Article  CAS  Google Scholar 

  29. Pigani L, Seeber R, Bedini A, Dalcanale E, Suman M. Adsorptive-stripping voltammetry at PEDOT-modified electrodes. Determination of Epicatechin. Food Anal Methods. 2014;7:754–60.

    Article  Google Scholar 

  30. Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6:2812–31.

    Article  CAS  Google Scholar 

  31. Pigani L, Foca G, Ulrici A, Ionescu K, Martina V, Terzi F, et al. Classification of red wines by chemometric analysis of voltammetric signals from Pedot-modified electrodes. Anal Chim Acta. 2009;643:67–73.

    Article  CAS  Google Scholar 

  32. Pigani L, Foca G, Ionescu K, Martina V, Ulrici A, Terzi F, et al. Amperometric sensors based on poly(3,4-ethylenedioxythiophene)-modified electrodes. Discrimination of white wines. Anal Chim Acta. 2008;614:213–22.

    Article  CAS  Google Scholar 

  33. Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36:1627–39.

    Article  CAS  Google Scholar 

  34. Aguirre MJ, Chen YY, Isaacs M, Matsuihir B, Mendoza L, Torres A. Electrochemical behavior and antioxidant capacity of anthocyanins from Chilean red wine, grape and raspberry. Food Chem. 2010;121:44–8.

    Article  CAS  Google Scholar 

  35. Burn DT, Danzer K, Townshend A. Use of the terms recovery and apparent recovery in analytical procedures. Pure Appl Chem. 2002;74:2201–5.

    Google Scholar 

  36. Janeiro P, Oliveira Brett AM. Redox behavior of anthocyanins present in Vitis vinifera L. Electroanalysis. 2007;19:1779–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support for this research by University of Modena and Reggio Emilia through FAR 2014 and by Fondazione di Vignola through Ricerca Scientifica e Tecnologica-2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Pigani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Chemical Sensing Systems with guest editors Maria Careri, Marco Giannetto, and Renato Seeber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pigani, L., Rioli, C., Foca, G. et al. Determination of polyphenol content and colour index in wines through PEDOT-modified electrodes. Anal Bioanal Chem 408, 7329–7338 (2016). https://doi.org/10.1007/s00216-016-9643-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9643-4

Keywords

Navigation