Skip to main content
Log in

A fast method for the detection of irinotecan in plasma samples by combining solid phase extraction and differential pulse voltammetry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, a fast method for the detection of irinotecan (CPT-11) in plasma samples was investigated. CPT-11 is widely used in a number of chemotherapeutic treatments of several solid tumors. The method is based on the combination of a solid phase extraction and an electrochemical detection step. The extraction of CPT-11 from plasma was performed using solid phase extraction (SPE) columns and acetonitrile as eluent. The procedure included also a cleaning step to eliminate interference due to plasma endogenous compounds and the co-therapeutics 5-fluoroacil (5-FU) and folinic acid (FA). The latter are administered together with CPT-11 in the FOLFIRI regimen. The detection of CPT-11 was performed by differential pulse voltammetry at a glassy carbon electrode (GCE) in basified acetonitrile media. Under these conditions, a well-defined peak due to the oxidation of the tertiary ammine end of CPT-11, also free from interference due to main metabolites, was obtained. Calibration plots showed a good linear response with limit of detection and quantification of 1.10 × 10−7 and 3.74 × 10−7 M, respectively. The suitability of the method proposed here for clinical applications was verified by determining the concentration of CPT-11 in plasma samples of an oncological patient, collected after 30 and 180 min from the infusion of the drug.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matsuzaki T, Yokokura T, Mutai M, Tsuruo T. Inhibition of spontaneous and experimental metastasis by a new derivative of camptothecin, CPT-11, in mice. Cancer Chemother Pharmacol. 1988;21:308–12.

    CAS  PubMed  Google Scholar 

  2. Kawato Y, Aonuma M, Hirota Y, Kuga H, Sato K. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 1991;51:4187–91.

    CAS  PubMed  Google Scholar 

  3. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    CAS  PubMed  Google Scholar 

  4. de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet. 2018;57:1229–54.

    PubMed  PubMed Central  Google Scholar 

  5. Shafiei M, Yoon R, McLachlan A, Boddy A, Beale P, ;Prunella Blinman P. Pharmacokinetics of anticancer drugs used in treatment of older adults with colorectal cancer: a systematic review, Ther Drug Monit 2019; 41:553–560.

    CAS  PubMed  Google Scholar 

  6. Kümler I, Balslev E, Stenvang J, Brünner N, Ejlertsen B, Jakobsen EH, et al. Two open-label, single arm, nonrandomized phase II studies of irinotecan for the treatment of metastatic breast cancer in patients with increased copy number of the topoisomerase I gene. BMC Cancer. 2019;19:573.

    PubMed  PubMed Central  Google Scholar 

  7. Mathijssen RHJ, Van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G. Sparreboom A Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res. 2001;7:2182–94.

    CAS  PubMed  Google Scholar 

  8. Tamargo J, Le Heuzey JY, Mabo P. Narrow therapeutic index drugs: a clinical pharmacological consideration to flecainide. Eur J Clin Pharmacol. 2015;71:549–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Li M, Chen W, Sun X, Wang Z, Zou X, Wei H, et al. Metastatic colorectal cancer and severe hypocalcemia following irinotecan administration in a patient with X-linked agammaglobulinemia: a case report. BMC Medical Genetics. 2019;20(157):2–7.

    Google Scholar 

  10. Jai N, Patel JN, Papachristos A. Personalizing chemotherapy dosing using pharmacological methods. 2015;76:879–96.

  11. Wilkinson DS. Therapeutic drug monitoring in oncology. Ther Drug Monit. 2019;41:551–2.

    PubMed  Google Scholar 

  12. Hahn RZ, Antunes MV, Verza SG, Perassolo MS, Suyenaga ES, Schwartsmann G, et al. Pharmacokinetic and pharmacogenetic markers of irinotecan toxicity. Curr Med Chem. 2019;26:2085–107.

    CAS  PubMed  Google Scholar 

  13. Meneghello A, Tartaggia S, Alvau MD, Polo F, Toffoli G. Biosensing technologies for therapeutic drug monitoring. Curr Med Chem. 2018;25:4354–77.

    CAS  PubMed  Google Scholar 

  14. Rodríguez Cáceres MI, Durán-Merás I, Soto NEO, de Alba PLL, Martínez LL. Spectrofluorimetric determination of irinotecan in the presence of oxidant agents and metal ions. Talanta. 2008;74:1484–91.

    PubMed  Google Scholar 

  15. Serrano LA, Yang Y, Salvati E, Stellacci F, Krol S, Guldin S. PH-mediated molecular differentiation for fluorimetric quantification of chemotherapeutic drugs in human plasma. Chem Commun. 2018;54:1485–8.

    CAS  Google Scholar 

  16. Tartaggia S, Alvau MD, Meneghello A, Casetta B, Polo F, Toffoli G. Practical fluorimetric assay for the detection of anticancer drug SN-38 in human plasma. J Pharm Biomed Anal. 2018;159:73–81.

    CAS  PubMed  Google Scholar 

  17. De Bruijn P, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A. Determination of irinotecan (CPT-11) and its active metabolite SN-38 in human plasma by reversed-phase high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Appl. 1997;698:277–85.

    Google Scholar 

  18. Gravel E, Bourget P, Mercier L, Paci A. Fluorescence detection combined with either HPLC or HPTLC for pharmaceutical quality control in a hospital chemotherapy production unit: application to camptothecin derivatives. J Pharm Biomed Anal. 2005;39:581–6.

    CAS  PubMed  Google Scholar 

  19. Poujol S, Pinguet F, Malosse F, Astre C, Ychou M, Culine S, et al. Sensitive HPLC-fluorescence method for irinotecan and four major metabolites in human plasma and saliva: application to pharmacokinetic studies. Clin Chem. 2003;49:1900–8.

    CAS  PubMed  Google Scholar 

  20. Owens TS, Dodds H, Fricke K, Hanna SK, Crews KR. High-performance liquid chromatographic assay with fluorescence detection for the simultaneous measurement of carboxylate and lactone forms of irinotecan and three metabolites in human plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2003;788:65–74.

    CAS  Google Scholar 

  21. Hahn RZ, Arnhold PC, Andriguetti NB, Schneider A, Klück HM, dos Reis SL, et al. Determination of irinotecan and its metabolite SN-38 in dried blood spots using high-performance liquid-chromatography with fluorescence detection. J Pharm Biomed Anal. 2018;150:51–8.

    CAS  PubMed  Google Scholar 

  22. Bansal T, Awasthi A, Jaggi M, Khar RK, Talegaonkar S. Development and validation of reversed phase liquid chromatographic method utilizing ultraviolet detection for quantification of irinotecan (CPT-11) and its active metabolite, SN-38, in rat plasma and bile samples: application to pharmacokinetic studies. Talanta. 2008;76:1015–21.

    CAS  PubMed  Google Scholar 

  23. Marangon E, Posocco B, Mazzega E, Toffoli G. Development and validation of a high-performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of Irinotecan and its main metabolites in human plasma and its application in a clinical pharmacokinetic study. PLoS One. 2015;10:1–18.

    Google Scholar 

  24. Gao S, Tao Z, Zhou J, Wang Z, Yun Y, Li M, et al. One-step solid extraction for simultaneous determination of eleven commonly used anticancer drugs and one active metabolite in human plasma by HPLC-MS/MS. Journal of Analytical Methods in Chemistry. 2018;7967694:1–12.

    Google Scholar 

  25. D'Aronco S, D'Angelo E, Crotti S, Traldi P, Agostini M. New mass spectrometric approaches for the quantitative evaluation of anticancer drugs levels in treated patients. 2019;41:1–10.

  26. Saita T, Fujito H, Mori M. Development of ELISAs for irinotecan and its active metabolite SN-38. Biol Pharm Bull. 2000;23:911–6.

    CAS  PubMed  Google Scholar 

  27. Kimmel DW, Leblanc G, Meschiewitz ME, Cliffel DE. Electrochemical sensors and biosensors. Anal Chem. 2012;84:685–707.

    CAS  PubMed  Google Scholar 

  28. Karadas N, Sanli S, Akmese B, Dogan-Topal B, Can A, Ozkan SA. Analytical application of polymethylene blue-multiwalled carbon nanotubes modified glassy carbon electrode on anticancer drug irinotecan and determination of its ionization constant value. Talanta. 2013;115:911–9.

    CAS  PubMed  Google Scholar 

  29. Zotti G, Berlin A, Vercelli B. Electrochemistry of conjugated planar anticancer molecules: irinotecan and sunitinib. Electrochim Acta. 2017;231:336–43.

    CAS  Google Scholar 

  30. Bonazza G, Tartaggia S, Toffoli G, Polo F, Daniele S. Voltammetric behaviour of the anticancer drug irinotecan and its metabolites in acetonitrile. Implications for electrochemical therapeutic drug monitoring. Electrochim Acta. 2018;289:483–93.

    CAS  Google Scholar 

  31. Novak JI, Komorsky-Lovrić Š, Lucić Vrdoljak A, Popović AR, Neuberg M. Voltammetric characterisation of anticancer drug irinotecan. Electroanalysis. 2018;30:336–44.

    Google Scholar 

  32. Temerk Y, Ibrahim M, Ibrahim H, Schuhmann W. Comparative studies on the interaction of anticancer drug irinotecan with dsDNA and ssDNA. RSC Adv. 2018;8:25387–95.

    CAS  Google Scholar 

  33. Norouzi P, Qomi M, Nemati A, Ganjali MR. Determination of anti colon cancer drug, irinotecan by fast Fourier transforms continuous cyclic voltammetry. Int J Electrochem Sci. 2009;4:1248–61.

    CAS  Google Scholar 

  34. Temerk YM, Ibrahim H. Individual and simultaneous square wave voltammetric determination of the anticancer drugs emodin and irinotecan at renewable pencil graphite electrodes. J Braz Chem Soc. 2013;10:1669–78.

    Google Scholar 

  35. Alvau MD, Tartaggia S, Meneghello A, Casetta B, Calia G, Serra PA, et al. Enzyme-based electrochemical biosensor for therapeutic drug monitoring of anticancer drug irinotecan. Anal Chem. 2018;90:6012–9.

    CAS  PubMed  Google Scholar 

  36. Temerk YM, Ibrahim H, Schuhmann W. Square wave cathodic adsorptive stripping voltammetric determination of the anticancer drugs flutamide and irinotecan in biological fluids using renewable pencil graphite electrodes. Electroanalysis. 2016;28:372–9.

    CAS  Google Scholar 

  37. Hatamluyi B, Es’haghi Z, Modarres Zahed F, Darroudi M. A novel electrochemical sensor based on GQDs-PANI/ZnO-NCs modified glassy carbon electrode for simultaneous determination of Irinotecan and 5-fluorouracil in biological samples. Sensors Actuators B Chem. 2019;286:540–9.

    CAS  Google Scholar 

  38. Combes O, Barré J, Duché JC, Vernillet L, Archimbaud Y, Marietta MP, et al. In vitro binding and partitioning of irinotecan (CPT-11) and its metabolite, SN-38, in human blood. Investig New Drugs. 2000;18:1–5.

    CAS  Google Scholar 

  39. Kirstein MM, Lange A, Prenzler A, Manns MP, Kubicka S, Vogel A. Targeted therapies in metastatic colorectal cancer: a systematic review and assessment of currently available data. Oncologist. 2014;19:1156–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Braun MS, Seymour MT. Balancing the efficacy and toxicity of chemotherapy in colorectal cancer. Ther Adv Med Oncol. 2011;3:43–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tournigand C, André T, Achille E, Lledo G, Flesh M, Mery-Mignard D, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol. 2004;22:229–37.

    CAS  PubMed  Google Scholar 

  42. Cremolini C, Del Re M, Antoniotti C, Lonardi S, Bergamo F, Loupakis F, et al. DPYD and UGT1A1 genotyping to predict adverse events during first-line FOLFIRI or FOLFOXIRI plus bevacizumab in metastatic colorectal cancer. Oncotarget. 2018;9:7859–66.

    PubMed  Google Scholar 

  43. Bard AJ, Faulkner LR. Electrochemical methods. Fundamental and applications. 2nd ed. New York: Wiley; 1980.

    Google Scholar 

  44. Long GL, Winefordner JD. Limit of detection: a closer look at the IUPAC definition. Anal Chem. 1983;55:713A–24A.

    Google Scholar 

  45. Pitot HC, Goldberg RM, Reid JM, Sloan JA, Skaff PA, Erlichman C, et al. Phase I dose-finding and pharmacokinetic trial of irinotecan hydrochloride (CPT-11) using a once-every-three-week dosing schedule for patients with advanced solid tumor malignancy. Clin Cancer Res. 2000;6:2236–44.

    CAS  PubMed  Google Scholar 

  46. Xie R, Mathijssen RHJ, Sparreboom A, Verweij J, Karlsson MO. Clinical pharmacokinetics of irinotecan and its metabolites in relation with diarrhea. Clin Pharmacol Ther. 2002;72:265–75.

    CAS  PubMed  Google Scholar 

  47. Kehrer DFS, Sparreboom A, Verweij J, De Bruijn P, Nierop CA, Van de Schraaf J, et al. Modulation of irinotecan-induced diarrhea by cotreatment with neomycin in cancer patients. Clin Cancer Res. 2001;7:1136–41.

    CAS  PubMed  Google Scholar 

  48. Satoh T, Yasui H, Muro K, Komatsu Y, Sameshima S, Yamaguchi K, et al. Pharmacokinetic assessment of irinotecan, SN-38, and SN-38-glucuronide: a substudy of the FIRIS study. Anticancer Res. 2013;33:3845–54.

    CAS  PubMed  Google Scholar 

  49. Sochor J, Dobes J, Krystofova O, Ruttkay-Nedecky B, Babula P, Pohanka M, et al. Electrochemistry as a tool for studying antioxidant properties. Int J Electrochem Sci. 2013;8:8464–89.

    CAS  Google Scholar 

  50. Chan KK, Webster RD. Solid phase extraction - voltammetric coupled detection of caffeine in acetonitrile. Electroanalysis. 2016;28:516–22.

    Google Scholar 

  51. Casella IG, Bonito R, Contursi M. Determination of some β-blockers by electrochemical detection on polycrstalline gold electrode after solid phase extraction (SPE). Electroanalysis. 2016;28:1060–7.

    CAS  Google Scholar 

  52. Xu S, Lin G, Zhao W, Wu Q, Luo J, Wei W, et al. Necklace-like molecularly imprinted nanohybrids based on polymeric nanoparticles decorated multiwalled carbon nanotubes for highly sensitive and selective melamine detection. ACS Appl Mater Interfaces. 2018;10:24850–9.

    CAS  PubMed  Google Scholar 

  53. Amatatongchai M, Sroysee W, Sodkrathok P, Kesangam N, Chairam S, Jarujamrus P. Novel three-dimensional molecularly imprinted polymer-coated carbon nanotubes (3D-CNTs@MIP) for selective detection of profenofos in food. Anal Chim Acta. 2019;1076:64–72.

    CAS  PubMed  Google Scholar 

  54. European Medicines Agency Committee for Medicinal Products for Human Use. Guideline on bioanalytical method validation. 2012;44:1–23 EMEA/CHMP/EWP/192217.

Download references

Funding

This work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC) under the grant assigned for the Project 12214 (Innovative Tools for cancer risk assessment and early diagnosis—5 × 1000) and the Regione Friuli-Venezia-Giulia under the grant assigned for the Project “NADIATools” (Nano Diagnostic and Automated Therapeutic Tools for Oncology—POR-FESR 2014-2020, call 1.3b Smart Health).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Daniele.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For all experiments conducted with patient plasma, informed consent was obtained and approval was granted by the Medical Ethics Committee of the Centro di Riferimento Oncologico di Aviano (CRO), Italy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 983 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonazza, G., Tartaggia, S., Toffoli, G. et al. A fast method for the detection of irinotecan in plasma samples by combining solid phase extraction and differential pulse voltammetry. Anal Bioanal Chem 412, 1585–1595 (2020). https://doi.org/10.1007/s00216-020-02386-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02386-1

Keywords

Navigation